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ABSTRACT: The aviation industry’s shift toward Predictive Maintenance (PdM), powered by Artificial 

Intelligence (AI) and Big Data, is transforming the role of maintenance technicians from manual troubleshooters 

to data-driven decision-makers. While PdM systems can forecast component degradation and optimize 

maintenance schedules, their success ultimately depends on the technician’s ability to interpret and act upon 

probabilistic information. Current research has concentrated on the technical development of PdM algorithms 

and traditional human error, leaving a significant gap in understanding the cognitive and collaborative skills 

required in this emerging digital environment. 

This paper explores the competencies of data literacy and human AI collaboration as critical enablers for effective 

PdM implementation. It argues that existing Maintenance Resource Management (MRM) training does not 

adequately prepare technicians for decision-making under uncertainty, thereby increasing the risks of automation 

bias and data misinterpretation. 

Using a conceptual qualitative synthesis, the study develops a structured competency framework that integrates 

two key domains: (1) data literacy emphasizing the evaluation of data quality and probabilistic Remaining Useful 

Life (RUL) outputs and (2) human AI collaboration focusing on calibrated trust, interpretability, and feedback 

mechanisms in AI-assisted maintenance environments. By shifting the emphasis from manual proficiency to 

cognitive readiness, this framework supports a safer, human centered integration of AI into aircraft maintenance 

practice and establishes the foundation for future curriculum design and regulatory guidance in predictive 

maintenance training. 

KEYWORDS  - Predictive Maintenance (PdM); Data Literacy; Human–AI Collaboration; Aviation 

Maintenance Training; Cognitive Readiness; Automation Bias. 

 

I.      INTRODUCTION  

1.The Paradigm Shift: From Reactive to Predictive 

Maintenance 

High-reliability industries particularly commercial 

aviation are undergoing a profound transformation 

in maintenance philosophy, driven by the 

convergence of the Internet of Things (IoT), big-

data analytics, and artificial intelligence (AI) 

(ICAO, 2023). [1]Traditional approaches relied 

primarily on reactive maintenance (repairing 

components after failure) or time-based preventive 

maintenance (servicing components at fixed 

intervals). 
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 Modern aircraft now generate vast quantities of 

operational data, enabling a shift toward predictive 

maintenance (PdM) and prognostics and health 

management (PHM) (Al-Jumaili et al., 2012). [2] 

These data-driven methods use machine-learning 

algorithms to estimate the remaining useful life 

(RUL) of critical components, allowing 

maintenance to be scheduled precisely when needed 

reducing costs, minimizing unscheduled downtime, 

and improving aircraft availability (Patibandla, 

2023).[3] 

1. Problem Statement: The Human–AI 

Interpretation Gap 

While AI-based PdM systems have demonstrated 

strong predictive capability, their success ultimately 

depends on the human interpreter: the maintenance 

technician.  

The technician’s role is evolving from that of a 

hands-on fault-remedier to a data-centric decision-

maker (Jasper, 2023). [6]This cognitive shift 

introduces a new class of human-factors hazards that 

existing Maintenance Resource Management 

(MRM) training programs fail to address (Reason & 

Hobbs, 2003).[4] 

In the PdM environment, failures are no longer 

purely mechanical they increasingly result from 

cognitive errors and digital-literacy gaps. Two 

recurring issues illustrate this challenge: 

Data Misinterpretation: The inability to evaluate 

the quality, context, and probabilistic nature of an 

RUL prediction can lead to either missed safety 

events or unnecessary component replacements (TU 

Delft Repository, 2022).[5] 

Uncalibrated Reliance: Technicians may exhibit 

automation bias over-trusting AI outputs and 

neglecting verification or, conversely, algorithmic 

distrust, rejecting valid predictions (ICAO, 

2023).[1] 

Consequently, the enormous investment in PdM 

infrastructure is constrained by a shortage of 

technicians trained to make sound, data-informed 

judgments. 

2.Aims of the Paper 

To address these emerging safety and operational 

challenges, this paper pursues two primary aims: 

To define core competencies: conceptually identify 

and categorize the data-literacy and human–AI 

collaboration skills essential for maintenance 

professionals operating in PdM environments. 

To propose a training framework: outline a 

structured model for integrating these competencies 

into existing maintenance-training curricula (e.g., 

EASA Part 147 or FAA-approved programs) to 

support effective, safe, and efficient human AI 

teamwork. 

3. Research Gap and Contribution 

Most existing research on PdM in aviation 

emphasizes the technical performance of AI and 

machine-learning models (Patibandla, 2023)[3] or 

explores regulatory and ethical aspects of 

automation (Henneberry et al., 2023)[14]. Limited 

attention has been paid to the human competencies 

required to interpret and apply predictive outputs in 

real maintenance contexts. 

 Recent reviews also show that current aviation-

training curricula underemphasize AI, data 

analytics, and machine-learning concepts, creating a 

misalignment between workforce preparation and 

industry needs (Transport and Telecommunication 

Institute, 2023). 

This study contributes by moving beyond 

technology to address the human dimension of PdM 

adoption. It proposes a structured, data-centric 

competency model grounded in human-factors and 

cognitive-science theory that links the demands of 

prognostic data to measurable technician skills. 

 The resulting framework provides aviation-

maintenance organizations and training institutions 

with a foundation for developing the digitally 

proficient maintenance workforce required for the 

next generation of predictive maintenance systems. 
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II.     CONCEPTUAL FRAMEWORK 

DEVELOPMENT 

Core Competency Framework for Predictive 

Maintenance (PdM) Technicians 

1. Overview 

The transition to Predictive Maintenance (PdM) 

requires more than the adoption of new technologies 

it demands a fundamental transformation of 

technician competencies. Traditional maintenance 

training emphasizes procedural compliance and 

mechanical skill; however, PdM environments 

require technicians to engage in data interpretation, 

probabilistic reasoning, and collaborative decision-

making with AI systems. 

To address this shift, a three-pillar PdM 

Competency Model is proposed. The framework 

defines the cognitive and behavioral skills necessary 

for technicians to operate effectively in data-driven 

maintenance environments. 

 The three core competency domains are: 

Data Literacy – interpreting, validating, and 

applying probabilistic data. 

Human–AI Collaboration (HAIC) and Trust – 

calibrating reliance on AI systems and engaging in 

explainable decision-making. 

Organizational and Ethical Awareness – 

understanding accountability, feedback, and safety 

implications in AI-supported operations. 

Each domain integrates targeted training 

interventions grounded in established human-factors 

and cognitive-learning principles. 

2.Core Competency Framework for Predictive 

Maintenance (PdM) Technicians 

Building on the aims outlined in Section 1, this 

paper develops a conceptual framework that 

identifies and organizes the essential human 

competencies required for effective Predictive 

Maintenance (PdM) in aviation.  

While existing literature has primarily emphasized 

algorithmic accuracy and system reliability, there is 

limited attention to the human cognitive and 

organizational capabilities that determine the 

success of PdM implementation. 

To address this gap, the following framework 

defines three integrated domains of technician 

competence: Data Literacy, Human–AI 

Collaboration and Trust, and Organizational and 

Ethical Awareness. Each domain is supported by a 

structured set of skills, cognitive challenges, and 

training interventions designed to enhance safety, 

interpretability, and human oversight in AI-driven 

maintenance environments. 

A: Data Literacy 

Definition: Data Literacy in the context of Predictive 

Maintenance (PdM) refers to the technician’s ability 

to understand, interpret, and critically evaluate 

maintenance data generated by AI systems, 

particularly probabilistic indicators such as 

Remaining Useful Life (RUL). 

It extends beyond technical data handling it 

represents a cognitive competency that integrates 

analytical reasoning, contextual understanding, and 

safety-centered judgment. 

In traditional maintenance, technicians relied on 

deterministic indicators such as fixed inspection 

intervals or binary fault codes (“OK”/“Not OK”). 

PdM, however, introduces probabilistic information 

a component may have a 70% chance of failure 

within 100 flight hours, or a predicted RUL of 50 

hours ±10%.  

These outputs demand interpretive reasoning, where 

the technician must assess data reliability, consider 

operational context, and decide whether to act 

immediately or continue operation safely. 

Developing data literacy is therefore fundamental to 

avoiding two new hazards in predictive 

environments: 

False confidence in misleading data (e.g., acting on 

noise or faulty sensors), and 

Complacency toward uncertain predictions (e.g., 

ignoring early failure warnings). 
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A data-literate technician becomes a critical thinker 

rather than a passive receiver of AI information, 

ensuring maintenance decisions remain grounded in 

both analytical evidence and operational context. 

Table I. Data Literacy Competency Framework 

 

Core Competency Domain A: Data Literacy skills, 

cognitive challenges, and training interventions for 

effective interpretation of predictive maintenance 

data. 

Through these activities, data literacy evolves from 

a purely technical skill to a cognitive competency, 

supporting safer and more cost-effective 

maintenance planning.  

 Data Quality and Context Awareness 

In PdM, the accuracy of predictions depends on the 

quality of sensor inputs and contextual factors (e.g., 

temperature, pressure, aircraft utilization rate). Poor 

data quality can mislead even the most advanced 

algorithms. A technician must therefore develop an 

analytical habit of cross-verification checking 

sensor health, comparing multiple parameters, and 

understanding the operational history of each 

component. 

This competency relates to the situation awareness 

model proposed by Endsley (1995)[15], where 

technicians must perceive data accurately, 

comprehend its meaning in context, and project its 

implications for maintenance outcomes. A lack of 

contextual evaluation can cause “automation-

induced complacency,” where technicians accept AI 

outputs without question, undermining safety. 

 Uncertainty Interpretation and Probabilistic 

Thinking 

Unlike deterministic maintenance systems, PdM 

outputs rarely provide absolute answers. Instead, 

technicians receive confidence intervals or 

probabilistic predictions. For instance, an AI tool 

may suggest that “the hydraulic pump is 80% likely 

to fail within 60 flight hours.” 

Understanding this information requires 

technicians to develop statistical literacy the ability 

to interpret probability as a decision-support tool 

rather than a prediction of certainty. 

This demands higher-order cognitive processing, as 

technicians must integrate uncertainty with 

operational judgment, risk tolerance, and safety 

margins. Inadequate probabilistic understanding can 

lead to automation bias, where technicians defer 

decisions to AI without assessing underlying 

reliability, or to algorithmic distrust, where valid 

warnings are ignored. 

Cognitive Training Outcomes 

Through structured, simulation-based interventions, 

data literacy training transforms technicians from 

procedural operators into analytical evaluators. 

 It equips them to: 

Critically assess data reliability and AI output 

consistency. 
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Balance risk decisions under uncertainty with 

confidence. 

Communicate data-driven reasoning clearly during 

team decision-making. 

Ultimately, data literacy evolves from being a 

technical proficiency (e.g., “reading system 

outputs”) to a core cognitive competency one that 

underpins every decision in AI-assisted maintenance 

environments. This transformation supports both 

safety assurance and cost efficiency, ensuring 

technicians remain the intelligent interpreters of 

predictive systems, not their passive executors. 

2.Core Competency Domain 

 B: Human–AI Collaboration (HAIC) and Trust 

Definition: Human–AI Collaboration (HAIC) in 

Predictive Maintenance (PdM) refers to a 

technician’s ability to work effectively and safely 

alongside AI systems, treating them as analytical 

partners rather than infallible authorities. 

The goal is to maintain calibrated trust a balance 

between reliance and skepticism so that technicians 

neither over-trust AI outputs (automation bias) nor 

dismiss accurate predictions due to distrust or 

misunderstanding (algorithmic distrust). 

In PdM contexts, AI algorithms generate 

probabilistic predictions about equipment health. 

For example, an AI system may forecast that a bleed 

air valve has an 85% chance of failure within 40 

flight hours. A technician with calibrated trust uses 

this information to inform, not replace, their 

judgment cross-checking system parameters, 

consulting maintenance logs, and validating sensor 

consistency before acting. 

Developing effective HAIC skills ensures that AI 

serves as a decision-support tool, not a decision-

maker, preserving human accountability and 

situational awareness. 

 

 

Table II. Human–AI Collaboration (HAIC) 

Competency Framework 

 

Core Competency Domain B: Human–AI 

Collaboration and Trust skills, challenges, and 

training interventions supporting calibrated trust 

and explainable-AI utilization. 

Developing these skills ensures technicians become 

informed supervisors of AI, capable of interpreting 

model reasoning rather than deferring blindly to its 

outputs. 

Understanding Calibrated Trust 

The relationship between humans and intelligent 

systems has long been described through the 

“appropriate reliance” framework proposed by Lee 

and See (2004), which emphasizes that optimal 

performance occurs when human trust aligns with 

system reliability. In PdM, this means technicians 

must learn to adjust their level of reliance 
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dynamically trusting AI outputs when data is 

consistent and questioning them when anomalies 

appear. 

Uncalibrated trust can manifest as: 

Automation Bias: unquestioning acceptance of AI 

outputs, leading to overlooked faults or deferred 

maintenance actions. 

Algorithmic Distrust: premature rejection of valid 

AI alerts, often due to lack of understanding of how 

predictions are generated. 

Trust calibration training develops metacognition 

awareness of one’s thought process enabling 

technicians to monitor and adjust their confidence in 

AI over time. By practicing in simulated 

environments with intentionally varying AI 

reliability, trainees build the habit of continuous 

evaluation rather than blind acceptance. 

 Explainable AI (XAI) and Cognitive 

Transparency 

Explainable AI (XAI) is critical for fostering human 

interpretability and accountability in PdM. 

Traditional AI systems operate as “black boxes,” 

offering predictions without showing how those 

conclusions were reached. This opacity undermines 

trust and limits human learning. 

By exposing internal reasoning such as showing that 

a specific temperature anomaly contributed 45% to 

a predicted failure XAI allows technicians to 

understand why the AI reached its decision. This 

fosters cognitive transparency, aligning algorithmic 

reasoning with physical intuition. 

Training technicians to use XAI interfaces also 

develops cross-domain literacy: they learn to bridge 

data-science concepts (e.g., feature weighting) with 

engineering knowledge (e.g., thermodynamic 

relationships). Over time, this interdisciplinary 

awareness leads to better fault interpretation, faster 

root-cause identification, and improved 

maintenance efficiency. 

 Cognitive and Behavioral Transformation 

Human–AI collaboration training moves technicians 

from being system users to system supervisors. 

After targeted HAIC training, technicians: 

Learn to challenge AI predictions constructively, not 

emotionally. 

Understand confidence thresholds and model 

limitations. 

Maintain accountability by documenting the 

rationale for AI acceptance or override. 

Communicate AI findings effectively within 

maintenance teams and across departments 

(engineering, data analytics, operations). 

These behaviors foster a culture of shared situational 

awareness, where human insight and machine 

intelligence complement each other rather than 

compete. 

Ultimately, HAIC training creates resilient decision-

makers who can adapt to both system uncertainty 

and AI evolution ensuring safety remains human-

centered in increasingly automated environments. 

3.Core Competency Domain  

C: Organizational and Ethical Awareness 

Definition: Organizational and Ethical Awareness in 

Predictive Maintenance (PdM) refers to the 

technician’s understanding of their role within a 

larger socio-technical system how individual 

actions, decisions, and data inputs influence 

organizational safety, accountability, and learning. 

In AI-assisted maintenance environments, 

technicians are no longer just executors of scheduled 

tasks; they are data contributors, interpreters, and 

decision influencers whose choices directly impact 

predictive model reliability and overall 

airworthiness. 

This domain emphasizes two interconnected 

dimensions: 

Organizational Accountability – recognizing one’s 

responsibility within safety management structures 

and communication channels. 
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Ethical Responsibility – understanding the moral 

and professional duty to ensure AI outputs are used 

safely, transparently, and fairly. 

Developing awareness in these areas ensures that 

predictive maintenance does not become a 

technically efficient but ethically fragile system, but 

rather a resilient, learning-oriented ecosystem 

grounded in human judgment and organizational 

trust 

Table III. Proposed Three-Stage Validation 

Framework 

 

equential stages for validating the PdM Competency 

Model, detailing objectives, methods, and expected 

outcomes across expert evaluation, simulation, and 

curriculum-integration pilots. 

These competencies reinforce the human’s role as 

the final authority on airworthiness decisions while 

fostering a culture of continuous organizational 

learning. 

 

 Accountability and Ethical Decision-Making 

In traditional maintenance, accountability was clear-

cut: technicians followed procedures, and errors 

were traced to human performance. 

In PdM, accountability becomes more complex 

decisions are shared between human and AI 

systems. A technician may decide to act or not act 

based on an AI-generated probability, blurring the 

boundary between mechanical reliability and 

cognitive judgment. 

This raises key ethical questions: 

Who is responsible when an AI recommendation 

leads to a maintenance oversight? 

How should technicians balance organizational 

pressure for operational efficiency against the duty 

to prioritize safety? 

Training must therefore emphasize ethical 

discernment the ability to make and justify decisions 

that align with both technical evidence and moral 

responsibility. The “Just Culture” framework 

(Reason, 1997) provides the ideal foundation, 

promoting accountability without punishment and 

encouraging honest reporting of AI-related errors.  

When technicians feel psychologically safe to report 

near-misses or data misinterpretations, 

organizations gain invaluable learning opportunities 

that strengthen the predictive system. 

 Feedback Loop Engagement and Continuous 

Learning 

Predictive maintenance systems are inherently data-

dependent their predictive accuracy relies on 

feedback from real-world outcomes. If a technician 

replaces a component early but fails to record the 

actual failure status, the AI model cannot learn 

whether its prediction was correct. Over time, this 

lack of feedback erodes model reliability. 

Technicians must therefore see themselves not only 

as maintenance executors but also as co-creators of 

data integrity. By systematically entering 

maintenance outcomes, they participate in a 

continuous improvement loop that enhances both 

the AI system and the organization’s operational 

intelligence. 

This feedback engagement aligns with the principles 

of Safety Management Systems (SMS) and 

Organizational Learning Theory, where each 
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maintenance action contributes to collective 

knowledge. Proper training reinforces that accurate 

data entry and reflection are not administrative 

burdens but safety-critical tasks that uphold the 

long-term effectiveness of PdM programs. 

Organizational Culture and Ethical Climate 

The development of organizational and ethical 

awareness also depends on a supportive culture. 

Organizations that prioritize transparency, fairness, 

and communication are more likely to succeed in 

implementing PdM safely. 

When leaders frame AI not as a tool for surveillance 

but as an enabler of learning, technicians feel 

empowered to question predictions and share 

observations without fear of blame. 

Training programs should therefore include 

organizational-level interventions such as: 

Leadership workshops on managing AI 

accountability. 

Cross-departmental discussions between data 

scientists, engineers, and technicians. 

Reflective exercises where teams analyze how their 

collective decisions influence safety metrics. 

By cultivating an ethical climate rooted in trust, 

transparency, and learning, organizations can ensure 

that AI-driven maintenance complements not 

replaces human judgment and moral responsibility. 

 Cognitive and Behavioral Outcomes 

Training in this domain transforms technicians into 

ethically aware system participants who: 

Take ownership of their maintenance decisions and 

document justifications clearly. 

Actively contribute feedback to AI systems, 

improving predictive accuracy. 

Engage in transparent discussions about AI 

performance and model reliability. 

Demonstrate ethical integrity by prioritizing safety 

even under operational pressure. 

Such outcomes contribute to a culture of informed 

accountability, where human and AI collaboration is 

reinforced by ethical consistency and organizational 

trust. 

Organizational and Ethical Awareness completes 

the PdM competency model by linking technical 

decision-making with organizational learning and 

moral responsibility. It ensures that as AI transforms 

aviation maintenance, humans remain the ethical 

anchors and quality guardians of predictive systems. 

III.   CURRICULUM INTEGRATION AND EDUCATIONAL 

IMPLICATIONS 

1. Integration and Curriculum Implications 

The proposed Predictive Maintenance Competency 

Model can be effectively embedded into existing 

EASA Part 147 and FAA-approved Maintenance 

Training Organization (MTO) curricula by 

expanding beyond procedural skill instruction to 

include cognitive, analytical, and ethical 

competencies. 

Integration can occur through the following three 

instructional modifications: 

 Digital-Simulation Environments 

The use of high-fidelity digital twin environments 

and virtual maintenance simulators provides a 

controlled yet realistic platform for experiential 

learning. These systems replicate actual aircraft 

systems and PdM dashboards, allowing trainees to 

interact with synthetic or historical maintenance 

data safely and repeatedly. 

Through simulated fault conditions and AI-

generated Remaining Useful Life (RUL) 

predictions, technicians can practice data validation, 

uncertainty interpretation, and AI collaboration 

without operational risk. 

This approach supports experiential cognition, 

enabling learners to visualize system behaviors, 

understand probabilistic patterns, and develop 

decision confidence in predictive contexts. 
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According to Boeing (2023)[12], digital twin 

training environments not only improve knowledge 

retention but also shorten skill acquisition time by 

enabling immediate feedback and iterative learning. 

Incorporating digital simulation into Part 147 

programs thus redefines the “hands-on” component 

from purely mechanical manipulation to data-driven 

scenario management, aligning maintenance 

education with the realities of intelligent 

maintenance systems. 

Scenario-Based and Experiential Learning 

Traditional maintenance training often emphasizes 

procedural compliance—performing checklists and 

routine tasks by rote. In a PdM context, however, 

technicians must navigate uncertainty and 

probabilistic risk, requiring flexible and adaptive 

thinking. 

Scenario-Based Training (SBT) immerses learners 

in dynamic, data-rich situations where no single 

correct answer exists. For example, trainees may 

face conflicting AI outputs and physical 

observations, forcing them to balance risk, 

reliability, and safety priorities. 

This form of cognitive simulation encourages 

decision-making under ambiguity, reflective 

reasoning, and the development of critical thinking 

under pressure. 

According to TU Delft Repository (2022)[5], 

scenario-based learning promotes transfer of 

knowledge to real operational settings by engaging 

higher-order cognitive processes rather than 

procedural memory. Embedding SBT in aviation 

maintenance curricula ensures that trainees can 

interpret AI information, justify decisions 

transparently, and respond confidently to uncertain 

or conflicting system feedback. 

 Interdisciplinary Collaboration Modules 

Predictive Maintenance is inherently cross-

disciplinary requiring interaction among 

maintenance technicians, data scientists, reliability 

engineers, and AI specialists. 

Current maintenance programs rarely address this 

collaborative interface, leading to communication 

barriers that hinder the practical use of PdM 

systems. 

Structured interdisciplinary collaboration modules 

can bridge this gap by fostering mutual 

understanding between human and algorithmic 

reasoning. 

For example, trainees could participate in joint 

workshops where data scientists explain how AI 

models interpret sensor data, while technicians 

provide operational insights on physical system 

behavior. 

These exchanges cultivate shared mental models, 

ensuring both groups interpret PdM outputs 

consistently and communicate effectively across 

technical boundaries. 

ICAO (2023)[16] highlights that such collaboration 

improves not only technical integration but also 

organizational resilience, as cross-functional 

literacy enables teams to identify potential system 

errors earlier and implement corrective strategies 

proactively. 

Educational Impact 

Collectively, these curricular adaptations reposition 

aviation maintenance training from a compliance-

oriented paradigm toward a cognition-oriented 

paradigm. 

Trainees transition from “following procedures” to 

analyzing systems, from “reacting to faults” to 

anticipating failures, and from “executing 

commands” to collaborating with intelligent 

systems. 

This reorientation aligns with the broader aviation 

goal of developing human-AI synergy, where 

cognitive readiness, ethical accountability, and 

technical skill operate in tandem to sustain safety 

and efficiency. 

Summary of the Model’s Value 
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The proposed PdM Competency Model bridges the 

critical gap between technological innovation and 

human capability in modern aviation maintenance. 

By explicitly integrating cognitive, behavioral, and 

ethical skills into the technical training pipeline, it 

ensures that the human workforce remains 

adaptable, informed, and ethically grounded as AI 

technologies evolve. 

 Theoretical Contribution 

From a theoretical perspective, the model expands 

traditional Maintenance Resource Management 

(MRM) and Human Factors frameworks by 

introducing data literacy, calibrated trust, and ethical 

awareness as measurable competencies. 

This reconceptualization supports the development 

of Human-Centered AI systems, emphasizing 

interpretability and shared control rather than 

automation dominance. 

It provides aviation educators and policymakers 

with a conceptual structure to align regulatory 

training standards with the data-driven realities of 

predictive maintenance environments. 

 Practical Contribution 

Practically, the model serves as a blueprint for 

designing curricula, training modules, and 

assessment tools that prepare technicians for data-

intensive maintenance roles. 

It connects theoretical understanding with applied 

decision-making by embedding simulation, 

scenario-based learning, and cross-functional 

collaboration into the training process. 

This integration produces technicians who are not 

only technically proficient but also cognitively 

adaptable and ethically responsible capable of 

interpreting AI reasoning, recognizing data quality 

issues, and upholding safety accountability in 

complex operational contexts. 

 Pathways for Empirical Validation 

While this study presents a conceptual model, it 

establishes a foundation for future empirical 

validation. 

The model’s impact can be measured through: 

Scenario-based performance assessments, 

evaluating how technicians respond to uncertainty 

and AI-generated alerts. 

Trust calibration metrics, measuring changes in 

appropriate reliance and self-awareness when 

interacting with AI systems. 

 

Maintenance performance indicators, such as fault 

detection accuracy, data-reporting quality, and 

communication effectiveness during 

interdisciplinary tasks. 

Such validation will provide evidence-based 

refinement, allowing the competency model to 

evolve into a standardized framework for PdM 

training across global aviation institutions. 

By merging technological progress with human 

cognitive development, this model ensures that the 

future of aviation maintenance remains human-

centered, ethically grounded, and operationally 

intelligent. 

It equips technicians not just to use AI but to 

understand, question, and improve it, safeguarding 

the balance between innovation, accountability, and 

safety. 

IV.   METHODOLOGICAL DESIGN AND 

VALIDATION PLAN 

Proposed Validation Framework and 

Methodological Design 

Overview 

As this study is conceptual and exploratory in 

nature, it does not involve direct experimentation or 

field implementation. Instead, it proposes a 

qualitative validation framework designed to guide 

future empirical testing of the Predictive 

Maintenance (PdM) Competency Model. 
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This framework outlines structured stages through 

which the effectiveness, relevance, and instructional 

viability of the identified competencies Data 

Literacy, Human–AI Collaboration, and 

Organizational and Ethical Awareness can be 

systematically evaluated within aviation 

maintenance training contexts. 

The proposed methodology follows the Design 

Science Research (DSR) and qualitative synthesis 

traditions (Gregor & Hevner, 2013)[10]. In this 

paradigm, conceptual artifacts such as frameworks, 

models, or training systems are first designed based 

on theoretical and empirical literature, and 

subsequently validated through iterative feedback, 

simulation, and expert review. 

 

This approach ensures both conceptual soundness 

and practical relevance, enabling the PdM 

Competency Model to evolve into a robust 

foundation for future data-driven aviation training 

design. 

Research Design 

The proposed validation process consists of three 

sequential stages, each addressing a distinct layer of 

validation conceptual, behavioral, and instructional. 

This staged approach ensures the model is examined 

progressively, from expert conceptual scrutiny to 

practical training feasibility. 

Table IV. Validation Framework for the PdM 

Competency Model 

 

 

Sequential stages outlining objectives, methods, and 

expected outcomes for validating the PdM 

Competency Model through expert review, 

simulation, and pilot integration. 

 

This staged design ensures progressive validation 

without requiring extensive field deployment, 

making it feasible within a conceptual study context. 

Validation Rationale and Process Flow 

Each stage contributes a distinct dimension of 

evidence: 

Stage 1 (Conceptual Validation): Ensures that the 

competency domains and subskills are theoretically 

grounded and relevant to industry needs. Expert 

feedback establishes content validity and eliminates 

conceptual overlap or redundancy. 

Stage 2 (Behavioral Validation): Links theory to 

practice by observing how technicians apply 

competencies under simulated predictive 

conditions. Behavioral markers (e.g., confidence 

calibration, ethical reasoning under uncertainty) 

provide construct validity. 
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Stage 3 (Instructional Validation): Tests the 

model’s real-world feasibility within existing 

regulatory structures, verifying its pedagogical 

validity—the degree to which it can be taught, 

assessed, and sustained in actual training 

environments. 

The process is iterative, allowing insights from each 

stage to inform subsequent revisions. 

For example, feedback from expert reviews may 

refine the competency taxonomy, which then shapes 

simulation design; simulation findings, in turn, 

inform the pilot curriculum design. 

This feedback loop reflects the cyclical logic of 

design-science research, where understanding and 

artifact co-evolve through evaluation. 

Data Collection and Analysis Approach 

Although empirical data are not collected in this 

conceptual phase, future validation can employ 

qualitative thematic analysis of expert interviews 

and simulation observations. 

This method allows researchers to identify patterns 

of competency manifestation (e.g., evidence of data 

reasoning, trust calibration, or ethical justification). 

Triangulation across multiple data sources expert 

input, simulation logs, and trainee reflections would 

ensure credibility and robustness of findings. 

Ethical considerations should also be incorporated, 

including informed consent, participant anonymity, 

and transparency in data handling, aligning with 

aviation training ethics and human-subject research 

standards. 

Evaluation Metrics 

While the framework is qualitative, it proposes 

measurable evaluation criteria aligned with 

established human-factors principles: 

This staged validation framework provides a 

scalable pathway for testing and refining the PdM 

Competency Model. 

It allows for: 

Early detection of conceptual and instructional 

weaknesses before full-scale deployment. 

Continuous alignment with evolving AI 

technologies and maintenance regulations. 

Evidence-based improvement of training design and 

assessment criteria. 

By linking expert knowledge, simulation evidence, 

and curriculum feedback, this framework 

establishes a rigorous foundation for the long-term 

integration of cognitive, technical, and ethical 

competencies into predictive maintenance 

education. 

Table V. Summary of Theoretical and Practical 

Contributions 

 

Overview of how the PdM Competency Model 

extends existing human-factors theory and supports 

applied aviation-maintenance training. 

These metrics would form the basis for a future 

empirical study, providing both qualitative richness 

and quantitative alignment with aviation safety 

assessment practices. 

Reliability, Validity, and Ethical Considerations 

To ensure methodological rigor in future empirical 

applications of this framework, four key principles 

should guide data collection and evaluation: 

Triangulation: Combine multiple data sources 

expert reviews, trainee observations, and instructor 

feedback to cross-validate findings and minimize 

bias. 

Expert Consensus: Apply Delphi techniques or 

structured feedback rounds to achieve 
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intersubjective agreement on the framework’s 

completeness and relevance. 

Transferability: Document training scenarios, 

decision variables, and simulation parameters in 

sufficient detail to support replication across 

different aviation organizations and regulatory 

environments. 

Ethical Compliance: Adhere to aviation training 

research ethics, ensuring informed consent, 

participant confidentiality, and alignment with 

ICAO (2023) ethical standards for educational 

research. 

V.       DISCUSSION, 

 Positioning the Competency Model within Existing 

Literature 

The proposed Predictive Maintenance (PdM) 

Competency Model extends the human-factors 

discourse in aviation by reframing maintenance 

competence for the AI-driven era. 

Traditional Maintenance Resource Management 

(MRM) frameworks (Reason & Hobbs, 2003)[4] 

have focused primarily on teamwork, error 

management, and communication. However, they 

were developed during an era dominated by manual 

diagnostics and procedural maintenance, not 

algorithmic prediction. 

This study bridges that temporal and technological 

gap by introducing three interdependent cognitive 

domains Data Literacy, Human AI Collaboration 

(HAIC), and Organizational & Ethical Awareness 

that collectively redefine what constitutes technical 

proficiency in predictive maintenance. 

While prior research (e.g., Al-Jumaili, 2012[2]; 

ICAO, 2023[16]) has highlighted the growing 

presence of AI and Big Data in aviation systems, few 

studies have articulated a structured human 

competency model capable of aligning human 

judgment with predictive analytics.  

This framework, therefore, advances the literature 

by operationalizing abstract human factors (such as 

trust calibration, probabilistic reasoning, and ethical 

accountability) into trainable and observable 

competencies. 

 Cognitive and Behavioral Implications 

At its core, the model recognizes that the success of 

AI-enabled maintenance depends as much on human 

cognition as on algorithmic accuracy. 

Technicians must interpret uncertainty, challenge 

automated outputs, and make risk-informed 

judgments under dynamic operational conditions. 

The Data Literacy domain strengthens technicians’ 

analytical reasoning, enabling them to differentiate 

valid signals from noise and translate probabilistic 

Remaining Useful Life (RUL) values into actionable 

maintenance schedules. 

The Human–AI Collaboration domain enhances 

adaptive trust behavior, helping technicians 

maintain calibrated reliance on AI systems while 

retaining accountability. 

Finally, the Organizational and Ethical Awareness 

domain anchors these skills within a culture of 

responsibility, transparency, and feedback ensuring 

that PdM implementation remains aligned with 

aviation’s core safety values. 

Together, these competencies mark a cognitive 

transformation in the aviation workforce, 

transitioning technicians from procedural operators 

to analytical collaborators in hybrid human–AI 

maintenance ecosystems. 

 Educational and Institutional Implications 

For training organizations, this framework offers a 

strategic blueprint for curriculum modernization. 

By embedding simulation-based, scenario-driven, 

and interdisciplinary learning modules within 

EASA Part 147 and FAA-approved programs, 

maintenance education can evolve from rote 

procedural instruction to cognitive readiness 

training. 

Digital twin simulations enable trainees to 

experience AI-generated predictive outputs in 

realistic contexts, while interdisciplinary 
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collaboration fosters shared understanding between 

engineers, data scientists, and maintenance 

personnel. 

Such training paradigms enhance not only 

individual technician performance but also 

organizational safety culture, ensuring that PdM 

integration occurs with human oversight, 

transparency, and ethical awareness. 

This curricular realignment aligns with broader 

industry initiatives such as ICAO’s “Next 

Generation Aviation Professionals” framework 

(2023[16]) which advocate for future-oriented 

training that blends technical expertise with data-

driven decision-making and ethical accountability. 

 Theoretical Implications 

From a theoretical standpoint, the PdM Competency 

Model contributes to Design Science Research 

(DSR) by exemplifying how conceptual models can 

bridge technological systems and human factors 

theory. 

It extends cognitive systems engineering principles 

by emphasizing trust calibration, data reasoning, and 

organizational learning as integrated competencies 

within AI-human collaboration. 

Moreover, by incorporating ethical reasoning and 

accountability into the core model, this research 

advances the emerging domain of Human-Centered 

Artificial Intelligence (HCAI) in aviation. 

 It provides a conceptual framework for balancing 

automation efficiency with human interpretability, 

supporting the idea that true system intelligence is 

distributed across both human and algorithmic 

agents. 

VI.       LIMITATION 

As a conceptual study, this research does not provide 

empirical data to test the model’s validity or its 

direct impact on technician performance. 

The current findings are based on qualitative 

synthesis and theoretical inference rather than field 

trials. 

Additionally, while the model is designed for 

commercial aviation, its generalizability to other 

high-consequence industries (e.g., rail, nuclear, 

maritime) requires further adaptation and validation. 

Nevertheless, this limitation is methodological 

rather than conceptual: the model provides a robust 

foundation for empirical exploration, simulation-

based validation, and longitudinal performance 

assessment in future research. 

VII.       FUTURE RESEARCH 

Future studies should operationalize the proposed 

competencies into measurable performance 

indicators. 

Potential research pathways include: 

Empirical testing of technician decision-making 

accuracy and trust behavior using scenario-based 

simulations and eye-tracking metrics. 

Longitudinal studies assessing how competency-

based PdM training affects maintenance reliability, 

fault detection rates, and safety outcomes. 

Cross-cultural analysis comparing how technicians 

from different regulatory regions interpret 

probabilistic data and AI outputs. 

Algorithmic explainability research exploring how 

XAI interfaces influence technician trust, learning 

retention, and diagnostic precision. 

By progressively validating and refining the 

framework, these future studies can transform the 

proposed model from a conceptual blueprint into an 

industry-standard training and certification 

framework for predictive maintenance 

professionals. 

In summary, this discussion underscores that the 

integration of AI into aviation maintenance is not 

merely a technical evolution but a cognitive and 

organizational transformation. 

The PdM Competency Model addresses this shift by 

identifying the essential human capabilities 

analytical reasoning, calibrated trust, and ethical 
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accountability required to sustain safety and 

reliability in data-driven maintenance systems. 

It repositions the human technician as a strategic 

collaborator in intelligent maintenance ecosystems, 

ensuring that as machines predict, humans still 

decide. 

VIII.      CONCLUSION 

The aviation industry’s rapid adoption of Predictive 

Maintenance (PdM) technologies powered by 

Artificial Intelligence (AI), Big Data, and digital 

connectivity demands an equally transformative 

evolution in human competencies. This study 

responds to that need by developing a conceptual 

PdM Competency Model that redefines the 

technician’s role for the data-driven era. 

The model identifies three interdependent domains 

Data Literacy, Human AI Collaboration and Trust, 

and Organizational & Ethical Awareness that 

collectively form the cognitive foundation for 

effective human performance in predictive 

maintenance environments. 

 Each domain captures a vital dimension of the 

modern maintenance task: understanding 

probabilistic data, managing trust in AI outputs, and 

ensuring ethical accountability within complex 

operational systems. 

By embedding these competencies into existing 

EASA Part 147 and FAA-approved training 

curricula, maintenance organizations can shift from 

procedural compliance to cognitive readiness 

equipping technicians to think critically, collaborate 

intelligently with AI, and uphold safety through 

informed judgment. This integration ensures that 

human expertise remains the final safeguard in 

increasingly automated systems, maintaining the 

balance between efficiency, transparency, and trust. 

Conceptually, this study contributes to the growing 

body of Human-Centered AI and Human Factors in 

Aviation Maintenance literature by articulating how 

data-driven decision-making intersects with human 

cognition and ethics. Practically, it offers a 

structured pathway for training institutions to 

modernize maintenance education in alignment with 

emerging predictive technologies. 

While this work is conceptual, its proposed 

validation framework provides a clear roadmap for 

empirical testing through expert evaluation, 

simulation-based analysis, and pilot curriculum 

integration. Future research will transform this 

framework into an evidence-based standard for PdM 

workforce development, ensuring that as predictive 

technologies evolve, human capability evolves with 

them. 

Ultimately, this study affirms that the strength of 

predictive maintenance lies not only in algorithms 

but in the humans who interpret, question, and apply 

them. The future of aviation maintenance will not be 

defined by automation alone, but by the 

collaboration between intelligent systems and 

intelligent humans, working together to sustain 

safety, reliability, and ethical responsibility in the 

skies. 
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