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ABSTRACT : The purpose of this study is to investigate and contrast a number of nonparametric regression 

approaches, such as penalized spline methods, B-splines, and smoothing splines. Applying these techniques to 

simulated and actual datasets, such as Iraqi oil export data, focuses on parameter estimations and figuring out 

the optimal knot points for predicting periodic and nonlinear trends. The knot points are controlled and specified 

using generalized cross-validation (GCV) procedures to ensure an accurate curve fit to the data points. For time 

series data with nonlinear forms and periodic patterns in the response variable, this research uses nonparametric 

regression with sequential data in the explanatory variable. We perform research on simulated data that exhibits 

periodic patterns similar to economic periods, as well as on nonlinear data that uses complicated equations to 

express the interactions between variables. Simulations were conducted across a range of standard deviations 

and sample sizes. The efficiency of parameter estimation in these synthetic datasets was quantified using the mean 

absolute average error (MAME). For the empirical application, the parameters of the nonparametric regression 

models were estimated using monthly Iraqi oil export data, with the MAME employed as the evaluation metric. 

The effectiveness of these techniques is further evaluated in forecasting future values by calculating the mean 

absolute percentage error (MAPE). Among the approaches, the penalized spline consistently achieves the lowest 

average mean squared error across all levels of standard deviation and sample size in the simulated data, while 

also demonstrating robust forecasting performance. In contrast, the smoothing spline outperforms the other 

methods in terms of parameter estimation accuracy. 

KEYWORDS -knot points, parameter Estimation, B-Spline, Smoothing Spline, Penalized Spline. 

 

I.      INTRODUCTION  

     A statistical method known as 

regression analysis is used to identify the 

relationship between an explanatory variable and a 

response variable. This method allows predictions 

regarding the dependent variable based on the 

independent variable. The assumptions that 

underpin regression analysis are often relevant only 

for specific variables in particular contexts. When a 

parametric model is inaccurate, it can lead to 

misinterpretations that can significantly misguide 

decision-making. Moreover, there are instances 

where an appropriate parametric model simply does 

not exist [1], [2]. To overcome these limitations, 

employing nonparametric regression techniques 

becomes a compelling and effective solution. These 

methods effectively estimate parameters in cases 

were data exhibit nonlinear relationships. The 

technique of creating a smoothing curve from the 

available information is known as the smoothing 

method. This approach is an excellent alternative 

when conventional parametric models fall short or 
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when the assumptions underlying regression 

analysis are not satisfied, ensuring you have reliable 

results in challenging scenarios.[3]. 

Nonparametric regression is a useful 

technique in many research and data analysis fields 

because of its various advantages. The model can 

capture complicated and nonlinear relationships that 

parametric approaches would miss because of its 

flexibility. Observed that nonlinear models 

facilitated the accurate fitting of generalized 

additive models using nonparametric regression 

approaches. For handling symmetric error 

distributions, robust nonparametric regression 

techniques were devised. These approaches are 

especially helpful in situations where the 

relationships in the data are not well characterized or 

if they change between various sections. This 

method permits precise forecasts that, without 

imposing strict limitations, capture complex patterns 

and variations in the data.[4] 

In nonparametric regression techniques, a 

response variable and an explanatory variable or 

more are usually used. Instead of estimating 

regression coefficients, it mainly focuses on 

estimating a smoothing function that gives a better 

accurate representation of the data. This smoothing 

function assists in identifying the fundamental trend 

that occurs between one or more explanatory 

variables and the response variable. The scatterplot 

smoothing approach, which is used when there is 

only one explanatory variable, improves the 

scatterplot's visual clarity and facilitates the 

identification of patterns in the relationship between 

the explanatory and response variables.[5] 

Nonparametric regression is employed to determine 

the relationship between variables without 

presuming a specific functional shape, and these 

estimated covariates are then incorporated into 

models where several equations are solved 

concurrently.[6] 

In the context of nonparametric regression, 

there are several methods used to estimate 

nonparametric regression models, including the 

local polynomial regression method, the smoothing 

splines method, the regression spline method, the 

kernel smoothing method, and the penalized splines 

method.[7] In addition, nonparametric regression 

models were specially modified for use in time 

series analysis, making it possible to depict the 

possibility of nonlinear interactions. Furthermore, 

time series analysis has seen an adoption of 

nonparametric regression models, which permit the 

modelling of possible nonlinear relations. For 

assessing smooth structural changes in time series 

models, Chen and Hong [8] suggested 

nonparametric estimate methods. 

The principal aim of this study is to conduct 

a systematic evaluation and comparative analysis of 

several nonparametric regression techniques—

namely, smoothing splines, B-splines, and penalized 

splines—within the context of time series data 

characterized by cyclic patterns and nonlinear 

dynamics. Through the application of these 

methods, the study seeks to enhance the accuracy of 

both forecasting and parameter estimation, 

particularly in settings where conventional 

parametric models are insufficient to capture the 

underlying complexity of the data. This study's 

significant addition is that it applies these 

nonparametric approaches to real-world and 

simulated datasets, focusing on the monthly oil 

exports in Iraq. This method demonstrates the 

importance of nonparametric regression in 

addressing real-world issues associated with energy 

forecasting. To provide light on the best approaches 

for various types of data, the study compares and 

contrasts these methods using measurements of 

performance, including mean absolute average error 

(MAAE) and mean absolute percentage error 

(MAPE).In addition to providing a thorough 

analysis in which the selection of knots and 

smoothing parameters might affect prediction 

accuracy, this study advances the discipline of 

nonparametric regression by showcasing the 

adaptability of these models in capturing intricate, 

nonlinear relationships. These approaches are 

essential in various sectors, including engineering, 

economics, and environmental research. The results 

have important implications for future work in time 

series analysis, especially in areas where data do not 

follow parametric assumptions. 

The structure of this paper is described as 

follows: Section 2 presents the related work. Section 

3, illustrates the methods and procedures that were 

used in this study: regression spline, the B-spline 

method, the smoothing spline method, and penalized 

spline method, as well as the estimation of 

smoothing parameters. Section 4 displays the study 
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of simulated data analysis and provides results. The 

final section provides an explained conclusion of the 

findings that were obtained from the simulation 

study and real data application. 

II.        MATERIALS AND METHODS 

1.Related Work  

Nonparametric regression estimates typically 

exhibit visible divergence from their parametric 

counterparts due to fundamental differences in their 

underlying assumptions. Unlike parametric methods 

that impose strong a priori assumptions regarding 

the functional form of the relationship between 

variables, nonparametric regression employs 

flexible models. This inherent flexibility enables 

nonparametric estimates to effectively capture 

intricate patterns and local variations present within 

the data [9]. Consequently, nonparametric 

approaches demonstrate a greater capacity to adapt 

to the inherent structure of the data, potentially 

yielding more accurate and reliable predictions 

compared to parametric methods constrained by pre-

specified functional forms. [5] 

In contrast, parametric approaches often presuppose 

a certain distribution for the data. EL-Morshedy et 

al.[10] highlighted the significance of parameter 

estimation in regression models by introducing the 

discrete Burr–Hatke distribution. Nevertheless, 

nonparametric regression is appropriate for 

analyzing data with uncertain or nonstandard 

distributions because it does not depend on such 

presumptions. Gal et al. [11] suggested a technique 

for estimating parameters in nonparametric 

regression using residuals based on symmetric and 

nonsymmetric distributions. In addition, many 

parametric approaches are not as effective as 

nonparametric regression when it comes to dealing 

with outliers and influencing data. The model is 

more resistant to extreme values because of its 

concentration on local data points, which means that 

outliers have less of an impact on the overall fit. To 

reduce the possibility of model misspecification, 

Cizek and Sadikoglu [12] studied nonparametric 

regression's robustness and found that it needs just 

modest identification assumptions. 

Nonparametric regression is a well-known 

smoothing approach that has been used recently in 

several different fields of study. Demir and Toktamis 

[13] investigated the adaptive kernel estimator for 

long-tailed and multimodal distributions and the 

nonparametric kernel estimator with fixed 

bandwidth. Shang and Cheng [14] addressed 

essential issues in the use of distribution algorithms 

by developing a smoothing spline approach and 

computational trade-offs. To predict the yield curve, 

Feng and Qian [15] presented a natural cubic spline 

model that is dynamic and uses a two-stage process. 

Among the many uses of B-spline functions that 

Than and Tjahjowidodo [16] brought to light were 

their implementations in CAD, numerical control 

systems, and computer graphics. Xiao [17] 

investigated penalized splines extensively, including 

B-splines and an integrated squared derivative 

penalty, in the context of large-sample asymptotic 

theory. 

2.Regression Spline   

 The estimate of the relationship between the 

function of explanatory variables (m ( 𝑥𝑖 )) and 

response variables ( 𝑦𝑖 ) is the procedure that is 

involved in nonparametric regression. In this paper, 

we will offer an overview of some of the more 

common techniques that are used in nonparametric 

regression models: 

 𝑦𝑖 = 𝑚(𝑧𝑖) + 𝜀𝑖 , 𝑖 = 1,2, . . . , 𝑛                                      (1) 

Where 𝜀𝑖 represents the error for each observation. 

The smoothing technique is the basis of the non-

parametric regression, which results in a smoother. 

It is a technique for predicting the function of 

predictor variables as well as can be used to improve 

the appearance of trends in the plot which can be 

achieved with the support of a smoother. According 

to Eubank [18], who first proposed the regression 

spline concept, a set of locations defines 

neighborhoods: 

𝜉0, 𝜉1, 𝜉2, . . . . . , 𝜉𝑚, 𝜉𝑚+1                                                      (2)   

In the range of interval [𝑎, 𝑏], where 𝑎 = 𝜉0 < 𝜉1 <

⋯ < 𝜉𝑚 < 𝜉𝑚+1 < 𝑏.  The term for these specific 

locations is denoted as knots, and 𝜉𝑟 , 𝑟 = 1,2, . . , 𝑚 

are called interior knots. Therefore, A regression 

spline may be formed with the m-th degree truncated 

power basis with K knots 𝜉1, 𝜉2, . . . . . , 𝜉𝑚: 

1, 𝑧𝑖 , ⋯ , 𝑧𝑖
𝑚 , (𝑧𝑖 − 𝜉1)+

𝑚, . . . . , (𝑧𝑖 − 𝜉𝑚)+
𝑚 , 𝑝 = 𝑀 + 𝑚 +

1  (3)      
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Where 𝑢+
𝑚  refer to the m-th power of the positive 

part of 𝑢  , where 𝑢+ = 𝑚𝑎𝑥( 0, 𝑢) .The first (𝑚 +

1) basis functions of the truncated power basis (3) 

are polynomials of degree up to m, and the others 

are all the truncated power function of the degree m. 

Therefore, A regression spline can be described as 

          𝑚(𝑥𝑖) ∑ 𝜑𝑟𝑧𝑖
𝑟𝑝

𝑟=0 + ∑ 𝜑𝑘+𝑗(𝑧𝑖 − 𝜉)+
𝑝𝑝

𝑗=1    (4)                 

Where , ,….., is the unknown regression 

coefficient that need to be determined with an 

appropriate loss minimization method.[19] [20]. 

 

3.B-Spline Regression Method 

       The spline model is a piecewise polynomial 

with segmented characteristics at intervals k 

produced at knot points. Points that represent 

changes in the data in subintervals are referred to as 

knot points. When the spline order is high, multiple 

knots or knots that are too close together will 

generate a matrix that is practically singular in 

computation, which means that normal equations 

cannot be solved. This is the most significant 

limitation of the spline method. The problem with 

B-splines is that they cannot be assessed directly 

since their basis can only be defined 

recursively[21] .Therefore, The B-splines basis 

function may be defined recursively as follows: 

      𝐵𝑠
𝑢(𝑧𝑖) = {

1 ,𝜉𝑠 < 𝑧 < 𝜉𝑠+1

0   otherwise
                           (5) 

Where  𝐵𝑠
𝑢(𝑧𝑖)  is the 𝑠𝑡ℎ  of the B-splines basis 

function of the order 𝑢 for the knot points sequence 

𝜉.[22] For the piecewise polynomial function, Liu et 

al. [23] computed B-splines of any degree using an 

algorithm. Evaluating the function of B-splines at 

the 𝑢𝑡ℎ degree from the (u − 1) th degree can be 

described as  

  𝐵𝑠
𝑢(𝑧𝑖) =

𝑧𝑖−𝜉𝑠

𝜉𝑠+𝑢−1−𝜉𝑠
𝐵𝑠

𝑢−1 +
𝜉𝑠+𝑢−𝑧𝑖

𝜉𝑠+𝑢−𝜉𝑠+1
𝐵𝑠+1

𝑢−1     (6)                               

Where the basis of order  with knot points 

{𝐵𝑠
𝑢|𝑠 = 1,2, . . . , 𝐾 + 𝑢 + 1}. A B-spline 

representation of the nonparametric regression 

model can be described as follows: 

   𝑦𝑖 = ∑ 𝐵𝑠
𝑚(𝑧𝑖)

𝑘
𝑠=1  𝛾𝑠 + 𝜀𝑖, 𝑖 = 1,2, . . . , 𝑛.      (7)              

Hence, the following is the fitting of the function of 

B-splines assessed at the knots , where s = 1..., K: 

   𝑚̂(𝑧𝑖) = ∑ 𝐵𝑠
𝑚(𝑧𝑖)

𝑘
𝑠=1 𝛾𝑠                                 (8)   

Moreover, the criteria for penalized least squares are 

as follows: 

              𝑃𝐿𝑆 = (𝑦 − 𝐵𝛾)𝑇(𝑦 − 𝐵𝛾) + 𝜆𝛾𝛺𝑘𝛾 

Where {𝐵}𝑖𝑠 = 𝐵𝑠
𝑚(𝑧𝑖), {𝛺𝑘}𝑖𝑠 =

∫ 𝐵𝑖
″(𝑧𝑖)𝐵𝑠

″(𝑧𝑖)𝑑𝑥, 𝛾 = (𝛾1, . . . , 𝛾)𝑇 is the 

coefficient regression vector of the B-spline. 

Therefore, the solution of the function of the B-

splines, denoted as 𝑚̂𝜆 , to the problem of 

minimization of the PLS involves the following:  

      𝑚̂𝜆 = (𝐵𝑇𝐵 + 𝜆𝛺𝐾)−1𝐵𝑇                         (9)      

                                           

4.Smoothing Spline Regression Method  

   The smoothing spline method's approximated 

process involves fitting a function of predictor 

variables  by minimizing the penalized 

least squares criteria, which is expressed by  

     𝑃𝐿𝑆 = 𝑅𝑆𝑆 + 𝜆 ∫ {𝑚″(𝑧𝑖)}2𝑏

𝑎
𝑑𝑥                   (10) 

Where the first part RSS = ∑ {𝑦𝑖 − 𝑚(𝑧𝑖}
2𝑛

𝑖=1  is the 

residual of square, and second part  

𝜆 ∫ {𝑚″(𝑧𝑖)}2𝑏

𝑎
𝑑𝑥  is the roughness penalty in the 

interval [a,b], This is a curve metric known as the 

smoothing parameter .Therefore, the second 

part  (roughness penalty ) can be written in the 

matrix form   

     𝜆 ∫ {𝑚″(𝑧𝑖)}2𝑏

𝑎
𝑑𝑥 =                      (11) 

Where 𝑚 = (𝑚1, 𝑚2, . . . . , 𝑚𝑘)𝑇 , 𝑚𝑟 = 𝑚(𝜉𝑟), 𝑟 =

1,2, . . , 𝑘. [24] generally, k refers to the number of 

knots, and 𝜉1, . . . . , 𝜉𝑘  are all the knot points of the 

smoothing spline such that may be arranged in 

ascending order as   

−∞ ≤ 𝑎 < 𝜉1 < 𝜉2 < ⋯ < 𝜉𝑘 < 𝑏 ≤ ∞ 

Therefore, the matrix H can be written as follows  

                    𝐻 = 𝐶 D−1𝐶𝑇                                (12) 

Where C is a matrix as a 𝑝 × (𝑝 − 2)matrix, and D 

is a matrix as a  Therefore, from 

(11) and (12), the penalized least square criterion 

can be described as  

              ‖𝑦 − 𝑤𝑚‖2 + 𝜆𝑚𝑇𝐻𝑚                       (13)            

0 1 k K +

u

s

( )( )im z

( )

 Tm H m

( 2) ( 2)p p−  −
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Where are the response 

variable, and 𝑊 = (𝑤𝑖𝑟)  is an incidence 

matrix with 𝑤𝑖𝑟 =1 if 𝑧𝑖 = 𝜉𝑟 and otherwise, and 

‖𝑦 − 𝑚𝑤‖2 = ∑ {𝑦𝑖 − 𝑓(𝑥𝑖)}2𝑛
𝑖=1 . [25] 

Consequently, the smoothing spline function (𝑚̂𝜆) 

evaluated at knots 𝜉𝑟   𝑟 = 1,2, . . . , 𝑘   may be 

expressed explicitly as follows: 

        𝑚̂𝜆 = (𝑊𝑊𝑇 + 𝜆𝐻)−1𝑊𝑇𝑦.                      (14) 

 

5. Penalized Spline Regression Method  

         The smoothing spline approach requires 

calculating an integral that measures the function's 

roughness, while the penalized spline method 

addresses this issue by employing a truncated power 

basis, as shown in Equation (3).  

Let represent the 

degree k truncated power basis with K knots 

. subsequently, we may articulate 

𝑚(𝑧𝑖)  in equation (1) as ,where 

is the vector that represents 

the corresponding coefficient. [26] Let H be a 

diagonal matrix, where the first k + 1 

diagonal    elements are set to zero and the remaining 

diagonal entries are set to one. Therefore, the matrix 

H can be given as  

𝐻 = [
0 0
0 𝐼𝑟

] 

Moreover, the penalized smoothing spline is 

denoted as , where the value of   

is the PLS criteria that minimizes the following: 

            Penalized least squares (PLS) = (𝑦 −

𝑊𝜃)𝑇(𝑦 − 𝑊𝜃) + 𝜆𝜃𝐻𝜃 

Where 𝑊 = (𝛿𝑟(𝑧1), . . . , 𝛿𝑟(𝑧𝑛))𝑇 ,and 𝜃𝐻𝜃 =

∑ 𝜃𝑘+𝑟
2𝑘

𝑟=1  

The penalized spline smoother is described as    

𝑚̂𝜆 = 𝑊(𝑊𝑇𝑊 + 𝜆𝐻)−1𝑊𝑇𝑦.                       (15) 

 

 

6.Estimation of Smoothing Parameters 

     Specifically, the generalized cross-validation 

(GCV) that was proposed by Wahba [27] and Craven 

[28] and Wahba is the primary focus of the 

smoothing parameter selection that is being 

discussed in this study. The generalized cross-

validation (GCV), which optimizes a smoothness 

selection criterion, is the optimal value for the 

smoothing parameter. By minimizing the GCV 

function, it facilitates the selection of smoothing 

parameters. The function employs the following 

formula: 

                                  

(16) 

Where H of smoothing spline is , The B-

spline is (𝐵𝑇𝐵 + 𝜆𝛺𝐾)−1𝐵𝑇 , and penalized spline is 

𝐹(𝐹𝑇𝐹 + 𝜆3𝐷)−1𝐹𝑇 

III.          RESULT AND DISCUSSION 

1.Simulation Study 

 This section presents a Monte Carlo simulation 

conducted using R software programming to 

estimate the response variable and evaluate the 

performance of Spline methods, including B-spline, 

smoothing spline, and penalized spline. 

Accordingly, the explanatory response variable in 

the time series data is characterized by periodic 

patterns and nonlinear shapes. Therefore, the 

periodic patterns observed in time series data are 

simulated by using the following function: 

 𝑧𝑡 = √𝑚𝑡 𝑐𝑜𝑠(2𝜋[1 + √𝑚𝑡]) + 𝜀𝑡 𝑡 = 1,2,3, . . , 𝑛  (1)                        

where   denotes an error term that follows a 

normal distribution with a mean of zero and standard 

deviations 1,3, and 5, as demonstrated in Figures1-

3. 
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Fig.1 The Plot of Periodic Patterns of Time Series for 

Different Sample Sizes With 𝜎 = 1 
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Fig 2. The Plot of Periodic Patterns of Time Series for 

Different Sample Sizes With 𝜎 = 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. The Plot of Periodic Patterns of Time Series for Different 

Sample Sizes With 𝜎 = 5 

 

 

 

 

 

 

Furthermore, the response variables with utilized of 

nonlinear shapes are simulated by using the 

following function: 

 𝑧𝑡 = 2√𝑚𝑡 𝑠𝑖𝑛 (2𝜋 [
1+20

𝑚𝑡+20
]) + 𝜀𝑡, 𝑡 = 1,2, . . . . , 𝑛     

(2) 

where   denotes an error term that follows a 

normal distribution with a mean of zero and standard 

deviations 1,3, and 5, as demonstrated in Figures4-

6. 
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Fig 4. The Plot of Nonlinear Shapes of Time Series 

for Different Sample Sizes With 𝜎 = 1 
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Fig5. The Plot of Nonlinear Shapes of Time 

Series for Different Sample Sizes With 𝜎 = 3. 

 

 

 

 

 

 

 

 

Fig 6. The Plot of Nonlinear Shapes of Time Series 

for Different Sample Sizes With 𝜎 = 5. 

 

2.Simulation Design  

This simulations study utilized five different sample 

sizes: n=100,150,200,250, and 300 with three 
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different standard deviations values: 𝜎 = 1,3,and 5.  

Furthermore, the data generated were replicated 

1000 times for each sample sizes to determine the 

best spline nonparametric regression method were 

applied to predict time series data characterized by 

periodic patterns and nonlinear shapes in the 

response variable, with explanatory variable 

considered as sequential data. 

Therefore, the generalized cross-validation (GCV) 

is used to choose the optimal smoothing parameter 

estimation as well as the cross-validation method 

(CV), while the number of knots is controlled and 

specified using cross-validation procedures, which 

make sure the curve suitably fits the data points.  

3. Simulation Result  

Tables 1, 2, and 3 present the values of the Mean 

Average Absolute Error (MAAE) and the 

number of knot points for spline methods that 

were applied in the periodic patterns and 

nonlinear time series data for all sample sizes 

100, 150, 200, 250, and 300 under different 

values of standard deviation of error as 1, 3, and 

5. 

 

Table 1. The Values of Mean Average Absolute Error 

(Maae) and The Mean of The Knot Point for Different 

Sample Sizes With 𝜎 = 1. 

n Methods 

Nonlinear Periodic patterns 

MAAE 
No. of 

knots 
MAAE 

No. 

of 

knots 

100 

B-Spline 0.623547 99 0.277846 99 

Penalized spline 0.256635 100 0.231000 100 

Smoothing 

Spline 
0.325871 65 0.463913 65 

150 

B-Spline 0.836252 140 0.629568 140 

Penalized spline 0.478959 145 0.418975 145 

Smoothing 

Spline 
0.562514 90 0.547623 90 

200 

B-Spline 0.992571 193 0.780542 193 

Penalized spline 0.505439 197 0.671000 197 

Smoothing 

Spline 
0.987871 120 0.717160 121 

250 

B-Spline 1.094318 240 1.186803 240 

Penalized spline 0.820787 235 0.632654 235 

Smoothing 

Spline 
0.976725 180 1.212508 180 

300 B-Spline 1.720780 283 1.182154 283 

Penalized spline 0.948713 291 0.876321 291 

Smoothing 

Spline 
1.070494 225 0.996325 225 

 

As seen from Tables 1, 2, and 3, the mean average 

absolute error (MAAE) for the periodic data is 

slightly different from that for the nonlinear data. 

Therefore, the mean average absolute error (MAAE) 

for the smoothing spline method is higher than from 

other methods, and there are fewer knots utilized. 

Furthermore, the increase in standard deviation 

corresponds to a rise in the mean average absolute 

error (MAAE), demonstrating its effect on the 

model's fitting performance. Despite the expansion 

of sample sizes, the parameter estimation remained 

consistent, indicating its robustness to variations in 

sample size. Therefore, it was observed that the 

penalized spline method consistently performed 

better than the other nonparametric regression 

models. 

 

Table 2. The Values of Mean Average Absolute Error (Maae) 

and the Mean of The Knot Points For Different Sample Sizes 

With 𝜎 = 3. 

n Methods 

Nonlinear Periodic patterns 

MAAE 

No. 

of 

knots 

MAAE 

No. 

of 

knots 

100 

B-Spline 0.743992 99 0.554278 99 

Penalized spline 0.474869 100 0.399641 100 

Smoothing Spline 0.599272 65 0.722549 65 

150 

B-Spline 0.508108 140 0.588418 140 

Penalized spline 0.456979 145 0.433687 145 

Smoothing Spline 0.642273 90 0.6774215 90 

200 

B-Spline 0.556112 193 1.02537778 193 

Penalized spline 0.495113 197 0.744865 197 

Smoothing Spline 0.936218 120 1.188651 121 

250 

B-Spline 1.093273 240 1.100456 240 

Penalized spline 0.507539 235 0.782214 235 

Smoothing Spline 0.898173 180 0.978214 180 

300 
B-Spline 1.451603 283 1.187922 283 

Penalized spline 0.675219 291 0.822169 291 
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Smoothing Spline 0.906713 225 0.922314 225 

 

 

Table 3. The Values of Mean Average Absolute Error (Maae) And 

the Mean of The Knot Points For Different Sample Sizes With 

𝜎 = 5. 

n Methods 

Nonlinear Periodic patterns 

MAAE 

No. 

of 

knots 

MAAE 

No. 

of 

knots 

100 

B-Spline 0.854213 99 0.622154 99 

Penalized 

spline 
0.317659 

100 0.6188974 100 

Smoothing 

Spline 
0.862231 

65 0.9123541 65 

150 

B-Spline 1.022845 140 0.922514 140 

Penalized 

spline 
0.725146 

145 0.811236 145 

Smoothing 

Spline 
0.933126 

90 0.988745 90 

200 

B-Spline 0.900326 193 0.778965 193 

Penalized 

spline 

0.890148 
197 0.633145 

197 

Smoothing 

Spline 

0.978641 
120 0.855263 

121 

250 

B-Spline 0.455623 240 1.200354 240 

Penalized 

spline 

0.811879 235 0.844567 235 

Smoothing 

Spline 

1.003265 180 1.188976 180 

300 

B-Spline 1.233654 283 0.665532 283 

Penalized 

spline 

0.974561 291 0.447158 291 

Smoothing 

Spline 

1.122302 225 0.881135 225 

 

IV.      REAL DATA APPLICATION   

Since the beginning, Iraqi oil exports have 

significantly contributed to the country's economy. 

This is because oil exports contribute to energy 

security, primary energy production, industrial 

usage, human development, and other areas of 

economic growth. The Iraqi economy is extremely 

dependent on oil exports. This study included a 

dataset of Iraq's oil exports consisting of 228 

monthly records from January 2005 to December 

2024.The dataset shows a nonlinear trend and 

periodic patterns with a component of seasons, as 

the figure 7 illustrates. 

 

Fig 7. The Time Series Plot of Oil Export of Iraq 

 

The real data analysis used three non-parametric 

approaches to figure out the smoothing function for 

Iraq's oil exports. These were the smoothing spline, 

the B-spline, and the penalized spline. A sequence 

of 228 months refers to the explanatory variable, 

while the monthly oil export volume (Million 

barrels) serves as the response variable. The Mean 

Average Absolute Error (MAAE) is a metric used to 

evaluate the precision of a model that averages the 

absolute differences between expected and actual 

values, and the accuracy of the predicted is 

evaluated in percentage terms by The Mean 

Absolute percentage error (MAPE). MAAE and 

MAPE are used to evaluate forecasting and estimate 

precision. Therefore, the following are the equations 

used to calculate MAAE and MAPE:  𝑀𝐴𝐴𝐸 =
1

228
∑ |𝑦𝑖 − 𝑦̂𝑖|228

𝑖=1 , 𝑖 = 1,2, . . . . ,22            (17)  

 

𝑀𝐴𝑃𝐸 =
1

228
∑ |

(𝑦𝑖−𝑦̂𝑖)

𝑦𝑖
|228

𝑡=1 × 100, 𝑡 = 1,2,3, . . . ,22   (18) 

 

Moreover, The Mean Average Absolute Error 

(MAAE) and knot points are approximated from the 

spline methods as: smoothing spline, B-spline, and 

penalized spline as shown in Figure 8. 
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Fig 8. The Fitted Nonparametric Regression Model of 

Iraq’s Oil Export. 

The fitted nonparametric regression models of all 

methods, the smoothing spline, B-splines, and 

penalized spline, make it hard to pick the best 

method, as shown in the figure above. The 

outperforming method is then investigated using 

mean average absolute error (MAAE). Therefore, 

the following Table 4 shows the values of MAAE 

and the number of knot points. 

 

Table 4. The Maae Values and Knot Points for 

Estimating the Nonparametric Regression Spline 

 

B-spline Penalized spline Smoothing spline 

Knots MAAE Knots MAAE Knots MAAE 

205 16893.221 220 15487.221 185 19845.554 
 

The results in the table above show that the best knot 

points and the mean average absolute error (MAAE) 

for nonparametric smoothing methods are B-spline, 

smoothing spline, and penalized spline. It is evident 

that the penalized spline method is the most accurate 

estimate method for this dataset since it provided the 

lowest mean average absolute error (MAAE). 

Furthermore, the estimate is followed by the use of 

these nonparametric regression models for the 

purpose of forecasting future values for the next 12 

months. The MAPE is then calculated in order to 

evaluate the accuracy throughout the period of time 

that is given. All methods are shown in Table 5, 

which includes the actual data, expected values, 

and the MAPE. 

Table 5. The Amount of Oil Export Per Month, Forecasting 

Values For 12 Months, And Mape 

Months 
Oil export 

per month 
B-spline 

Smoothing 

spline 

Penalized 

spline 

January 3365123.78 3164123.18 3154122.20 3465140.08 

February 3275148.65 3163120.05 3155110.85 3385048.75 

March 3250698.22 3150597.32 3140580.25 3360799.22 

April 3350862.98 3150761.99 3147675.88 3460963.18 

May 3150963.11 3050883.23 3040873.20 3260973.10 

June 3450899.88 3440889.45 3439779.95 3480998.95 

July 3516981.85 3514861.80 3513850.70 3618991.99 

August 3475187.66 3455170.55 3450175.99 3495199.86 

September 3514189.47 3513186.35 3512155.05 3519396.97 

October 3315264.87 3313340.60 3312541.75 3418274.99 

November 3400145.96 3400125.75 3400120.50 3500199.86 

December 3375487.33 3365477.20 3335455.25 3498697.93 

January 3250142.27 3240130.15 3241125.23 3390182.87 

 MAPE 11.4897 9.8865 5.7996 

 

Based on the table above, the most suitable method 

for estimating the actual data is the penalized spline 

nonparametric regression method. It outperformed 

the other techniques in predicting future values and 

recorded the lowest mean absolute percentage error 

(MAPE) at 5.7996. This indicates that the penalized 

spline method provides a high level of accuracy for 

future predictions. Additionally, the B-spline 

method performed better than the smoothing spline 

in terms of prediction accuracy, while the smoothing 

spline achieved a MAPE value of 9.8865. 

Therefore, Figure 9 compares three non-parametric 

regression methods—B-splines, smoothing splines, 

and penalized splines—for modelling Iraq's oil 

exports over a 12-month period. Both B-splines and 

smoothing splines closely follow the actual data 

points, while the penalized spline also performs well 

but produces a smoother curve. Notably, the 

smoothing spline exhibits greater variation and 

deviates from the other methods, especially around 

months 10 and 11. Overall, B-splines and penalized 

splines demonstrate the best fit for accurately 

forecasting oil exports. 
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Fig 9. Plot of Actual Data and Predictions Over 

12 Future Months. 

As seen in Table 6, the three non-parametric 

regression techniques demonstrate an increasing 

number of knots for predicting future data with 

respect to the influence of knots in actual datasets. 

Regardless, finding the best knots may not always 

be significant work, and increasing the number of 

knots doesn't always indicate the best method. Based 

on this study, smoothing splines and B-splines use 

the same knot approach as [29]; however, penalized 

splines are better at predicting future values. The 

relationship between the explanatory variables and 

the response variables could vary at particular points 

in the space of the explanatory variables, which are 

referred to as knots. They are frequently employed 

in spline-based nonparametric regression methods, 

such as cubic splines and piecewise linear 

regression, offering significant advantages in 

enhancing model flexibility and accuracy. 

 
Table 6 .The Mean Average Absolute Error (MAAE), Mean 

Absolute Percentage Error (MAPE) and the Number of Knot 

Points For Iraq’s Oil Export. 

Knot 
B-spline Smoothing spline Penalized spline 

MAAE MAPE MAAE MAPE MAAE MAPE 

50 75,8545.1 35.986 95,4658.1 30.963 60,8865.2 30.554 

100 60,3567.4 33.265 90,4625.7 27.125 53,4469.5 26.145 

150 57,1548.6 33.154 88,9875.2 22.189 47,4458.1 21.112 

200 55,5241.9 32.758 88,6532.1 17.332 41,8874.2 15.789 

 

V. CONCLUSIONS 

This study is significant as it compares popular 

nonparametric regression methods for simulated and 

real-world data, such as smoothing splines, B-

splines, and penalized splines. Standard deviations 

and sample sizes are used to simulate periodic 

patterns and nonlinear forms. In addition, use of a 

real dataset, such as Iraq's oil export, resulted in 

fitted model results that were similar to those 

derived from the simulated data. As noted, penalized 

splines perform well for predicting future values. 

Although these advantages, there are difficulties 

with nonparametric regression, such as the risk of 

excess fitting, the need for higher sample sizes, and 

additional analyzing complexity. Future studies 

should concentrate on investigating other 

nonparametric regression methods, such as kernel 

smoothing or local polynomial regression, as well as 

increasing the number of knot points to increase 

model accuracy. It would be possible to test these 

methods on datasets with various complexities. To 

conduct a complete assessment of forecasting 

accuracy, it will also be necessary to consider the 

computing efficiency of larger sets of data and to use 

other kinds of error measures, such as root mean 

square error (RMSE) or mean absolute error (MAE). 
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