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ABSTRACT : The purpose of this study is to investigate and contrast a number of nonparametric regression
approaches, such as penalized spline methods, B-splines, and smoothing splines. Applying these techniques to
simulated and actual datasets, such as Iraqi oil export data, focuses on parameter estimations and figuring out
the optimal knot points for predicting periodic and nonlinear trends. The knot points are controlled and specified
using generalized cross-validation (GCV) procedures to ensure an accurate curve fit to the data points. For time
series data with nonlinear forms and periodic patterns in the response variable, this research uses nonparametric
regression with sequential data in the explanatory variable. We perform research on simulated data that exhibits
periodic patterns similar to economic periods, as well as on nonlinear data that uses complicated equations to
express the interactions between variables. Simulations were conducted across a range of standard deviations
and sample sizes. The efficiency of parameter estimation in these synthetic datasets was quantified using the mean
absolute average error (MAME). For the empirical application, the parameters of the nonparametric regression
models were estimated using monthly Iraqi oil export data, with the MAME employed as the evaluation metric.
The effectiveness of these techniques is further evaluated in forecasting future values by calculating the mean
absolute percentage error (MAPE). Among the approaches, the penalized spline consistently achieves the lowest
average mean squared error across all levels of standard deviation and sample size in the simulated data, while
also demonstrating robust forecasting performance. In contrast, the smoothing spline outperforms the other
methods in terms of parameter estimation accuracy.
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I. INTRODUCTION

A statistical method known as

decision-making. Moreover, there are instances
where an appropriate parametric model simply does

regression analysis is used to identify the not exist [1], [2]. To overcome these limitations,

relationship between an explanatory variable and a
response variable. This method allows predictions
regarding the dependent variable based on the
independent variable. The assumptions that
underpin regression analysis are often relevant only
for specific variables in particular contexts. When a
parametric model is inaccurate, it can lead to
misinterpretations that can significantly misguide
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employing nonparametric regression techniques
becomes a compelling and effective solution. These
methods effectively estimate parameters in cases
were data exhibit nonlinear relationships. The
technique of creating a smoothing curve from the
available information is known as the smoothing
method. This approach is an excellent alternative
when conventional parametric models fall short or
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when the assumptions underlying regression
analysis are not satisfied, ensuring you have reliable
results in challenging scenarios.[3].

Nonparametric regression is a useful
technique in many research and data analysis fields
because of its various advantages. The model can
capture complicated and nonlinear relationships that
parametric approaches would miss because of its
flexibility. Observed that nonlinear models
facilitated the accurate fitting of generalized
additive models using nonparametric regression
approaches. For handling symmetric error
distributions, robust nonparametric regression
techniques were devised. These approaches are
especially helpful in situations where the
relationships in the data are not well characterized or
if they change between various sections. This
method permits precise forecasts that, without
imposing strict limitations, capture complex patterns
and variations in the data.[4]

In nonparametric regression techniques, a
response variable and an explanatory variable or
more are usually used. Instead of estimating
regression coefficients, it mainly focuses on
estimating a smoothing function that gives a better
accurate representation of the data. This smoothing
function assists in identifying the fundamental trend
that occurs between one or more explanatory
variables and the response variable. The scatterplot
smoothing approach, which is used when there is
only one explanatory variable, improves the
scatterplot's visual clarity and facilitates the
identification of patterns in the relationship between
the explanatory and response variables.[5]
Nonparametric regression is employed to determine
the relationship between variables without
presuming a specific functional shape, and these
estimated covariates are then incorporated into
models where several equations are solved
concurrently.[6]

In the context of nonparametric regression,
there are several methods used to estimate
nonparametric regression models, including the
local polynomial regression method, the smoothing
splines method, the regression spline method, the
kernel smoothing method, and the penalized splines
method.[7] In addition, nonparametric regression
models were specially modified for use in time
series analysis, making it possible to depict the

wWww.ijmret.org

possibility of nonlinear interactions. Furthermore,
time series analysis has seen an adoption of
nonparametric regression models, which permit the
modelling of possible nonlinear relations. For
assessing smooth structural changes in time series
models, Chen and Hong [8] suggested
nonparametric estimate methods.

The principal aim of this study is to conduct
a systematic evaluation and comparative analysis of
several nonparametric regression techniques—
namely, smoothing splines, B-splines, and penalized
splines—within the context of time series data
characterized by cyclic patterns and nonlinear
dynamics. Through the application of these
methods, the study seeks to enhance the accuracy of
both forecasting and parameter estimation,
particularly in settings where conventional
parametric models are insufficient to capture the
underlying complexity of the data. This study's
significant addition is that it applies these
nonparametric approaches to real-world and
simulated datasets, focusing on the monthly oil
exports in Iraq. This method demonstrates the
importance of nonparametric regression in
addressing real-world issues associated with energy
forecasting. To provide light on the best approaches
for various types of data, the study compares and
contrasts these methods using measurements of
performance, including mean absolute average error
(MAAE) and mean absolute percentage error
(MAPE).In addition to providing a thorough
analysis in which the selection of knots and
smoothing parameters might affect prediction
accuracy, this study advances the discipline of
nonparametric regression by showcasing the
adaptability of these models in capturing intricate,
nonlinear relationships. These approaches are
essential in various sectors, including engineering,
economics, and environmental research. The results
have important implications for future work in time
series analysis, especially in areas where data do not
follow parametric assumptions.

The structure of this paper is described as
follows: Section 2 presents the related work. Section
3, illustrates the methods and procedures that were
used in this study: regression spline, the B-spline
method, the smoothing spline method, and penalized
spline method, as well as the estimation of
smoothing parameters. Section 4 displays the study
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of simulated data analysis and provides results. The
final section provides an explained conclusion of the
findings that were obtained from the simulation
study and real data application.

II. MATERIALS AND METHODS

1.Related Work
Nonparametric regression estimates typically
exhibit visible divergence from their parametric
counterparts due to fundamental differences in their
underlying assumptions. Unlike parametric methods
that impose strong a priori assumptions regarding
the functional form of the relationship between
variables, nonparametric regression employs
flexible models. This inherent flexibility enables
nonparametric estimates to effectively capture
intricate patterns and local variations present within
the data [9]. Consequently,
approaches demonstrate a greater capacity to adapt
to the inherent structure of the data, potentially

nonparametric

yielding more accurate and reliable predictions
compared to parametric methods constrained by pre-
specified functional forms. [5]

In contrast, parametric approaches often presuppose
a certain distribution for the data. EL-Morshedy et
al.[10] highlighted the significance of parameter
estimation in regression models by introducing the
discrete Burr—Hatke distribution. Nevertheless,
nonparametric regression is
analyzing data with uncertain or nonstandard

appropriate  for

distributions because it does not depend on such
presumptions. Gal et al. [11] suggested a technique
for estimating parameters
regression using residuals based on symmetric and
nonsymmetric distributions. In addition, many
parametric approaches are not as effective as
nonparametric regression when it comes to dealing

in  nonparametric

with outliers and influencing data. The model is
more resistant to extreme values because of its
concentration on local data points, which means that
outliers have less of an impact on the overall fit. To
reduce the possibility of model misspecification,
Cizek and Sadikoglu [12] studied nonparametric
regression's robustness and found that it needs just
modest identification assumptions.

Nonparametric regression is a
smoothing approach that has been used recently in
several different fields of study. Demir and Toktamis

well-known
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[13] investigated the adaptive kernel estimator for
long-tailed and multimodal distributions and the
nonparametric  kernel estimator with fixed
bandwidth. Shang and Cheng [14] addressed
essential issues in the use of distribution algorithms
by developing a smoothing spline approach and
computational trade-offs. To predict the yield curve,
Feng and Qian [15] presented a natural cubic spline
model that is dynamic and uses a two-stage process.
Among the many uses of B-spline functions that
Than and Tjahjowidodo [16] brought to light were
their implementations in CAD, numerical control
systems, and computer graphics. Xiao [17]
investigated penalized splines extensively, including
B-splines and an integrated squared derivative
penalty, in the context of large-sample asymptotic
theory.

2.Regression Spline

The estimate of the relationship between the
function of explanatory variables (m (x;)) and
response variables (y;) is the procedure that is
involved in nonparametric regression. In this paper,
we will offer an overview of some of the more
common techniques that are used in nonparametric
regression models:

Vi = m(zi) +¢&,1 = 1,2,...,n (1)

Where ¢; represents the error for each observation.
The smoothing technique is the basis of the non-
parametric regression, which results in a smoother.
It is a technique for predicting the function of
predictor variables as well as can be used to improve
the appearance of trends in the plot which can be
achieved with the support of a smoother. According
to Eubank [18], who first proposed the regression
spline concept, a set of locations
neighborhoods:

EOI El! 62! """ !fm' Em+1

In the range of interval [a, b], where a = §; < &; <
e < &y < &1 < b. The term for these specific
locations is denoted as knots, and &, = 1,2,..,m

defines

are called interior knots. Therefore, A regression
spline may be formed with the m-th degree truncated
power basis with K knots &;,¢,,..... yEm:
Lz, (z = §)T ., (@ —§)Tp=M+m+
103)
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Where ul* refer to the m-th power of the positive
part of u , where u, = max(0,u).The first (m +
1) basis functions of the truncated power basis (3)
are polynomials of degree up to m, and the others
are all the truncated power function of the degree m.
Therefore, A regression spline can be described as

m(xi) Zf:o (per-r + 25;1 §0k+j(zi - f)ﬁ (4)
Where @, @, ,...... @, ,x is the unknown regression

coefficient that need to be determined with an
appropriate loss minimization method.[19] [20].

3.B-Spline Regression Method

The spline model is a piecewise polynomial
with segmented characteristics at intervals k
produced at knot points. Points that represent
changes in the data in subintervals are referred to as
knot points. When the spline order is high, multiple
knots or knots that are too close together will
generate a matrix that is practically singular in
computation, which means that normal equations
cannot be solved. This is the most significant
limitation of the spline method. The problem with
B-splines is that they cannot be assessed directly
since their basis can only be defined
recursively[21] .Therefore, The B-splines basis
function may be defined recursively as follows:

8D = [ e ®
Where B (z;) is the sth of the B-splines basis

function of the order u for the knot points sequence
&.[22] For the piecewise polynomial function, Liu et
al. [23] computed B-splines of any degree using an
algorithm. Evaluating the function of B-splines at
the uth degree from the (u — 1) th degree can be

described as
BY(z,)) = zi—=§s Bu—1 $s+u—zi Bu—l 6
s (ZL) Esqu—1—8& + Espy—Es+1l STT ©)

Where the basis of order # with knot points
{B¥|s=12,...., K +u+1} A B-spline
representation of the nonparametric regression
model can be described as follows:

yi =YK B™(z) ys +&,i=12,...,n.  (7)
Hence, the following is the fitting of the function of

B-splines assessed at the knots fs ,wheres=1...,K:

m(z;) = Yo, BM(z) vs ®
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Moreover, the criteria for penalized least squares are
as follows:

PLS = (y — By)"(y — By) + Ay,y

Where {B}is = Bs"(zy), {Q}is =
JB{(@)B{ (z)dx,y = (y1,... )T s the
coefficient regression vector of the B-spline.
Therefore, the solution of the function of the B-
splines, denoted as M, , to the problem of
minimization of the PLS involves the following:

M, = (BTB + A0,) BT 9)

4.Smoothing Spline Regression Method

The smoothing spline method's approximated
process involves fitting a function of predictor
variables (m (z, )) by minimizing the penalized

least squares criteria, which is expressed by

PLS = RSS + A [, {m" (z)}* dx (10)
Where the first part RSS = Y™ {y; — m(z;}? is the
residual of square, and second part
Af:{m"(zl-)}z dx is the roughness penalty in the
interval [a,b], This is a curve metric known as the
smoothing parameter (A) .Therefore, the second

part (roughness penalty ) can be written in the

matrix form
AL m" ()Y dx=m"H m (11)
Where m = (my,my,....,m)",m, =m(&),r=

1,2,.., k. [24] generally, k refers to the number of
knots, and &, ...., &, are all the knot points of the
smoothing spline such that may be arranged in
ascending order as
—o<a<§<EH< < E<b<L®

Therefore, the matrix H can be written as follows
H=cD™'cT (12)

Where C is a matrix as a p X (p — 2)matrix, and D
isamatrixasa (p —2)x(p —2) Therefore, from
(11) and (12), the penalized least square criterion
can be described as

ly — wm||? + Am"Hm (13)
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Where ¥ =(¥,,V,,...,»,) are the response
variable, and W = (w;,.) is an n X p incidence

matrix with w;,. =1 if z; = &, and otherwise, and
ly —mwll? = Sy lyi — ¥ . [25]
Consequently, the smoothing spline function (71;)
evaluated at knots &, r=12,...,k may be
expressed explicitly as follows:

My, = (WWT + AH) W Ty. (14)

5. Penalized Spline Regression Method

The smoothing spline approach requires
calculating an integral that measures the function's
roughness, while the penalized spline method
addresses this issue by employing a truncated power
basis, as shown in Equation (3).

Let 8.(i)=(5,(i),++,5.(i))" represent the
degree k truncated power basis with K knots
&,&,, & . subsequently, we may articulate
m(z;) in equation (1) as O(i).6 ,where

0= [90 5 191 IEEEN ‘9/( k ]T is the vector that represents

the corresponding coefficient. [26] Let H be a
p X p diagonal matrix, where the first k + 1

diagonal elements are set to zero and the remaining
diagonal entries are set to one. Therefore, the matrix
H can be given as

0 0
i=lo o]
Moreover, the penalized smoothing spline is

denoted as 71, =3, (i ) 0, where the value of 6

is the PLS criteria that minimizes the following:
Penalized least squares (PLS) = (y —
wWo)'(y —wo) + 10HO

Where W = (6,(z,),...,6-(2z,))",and OHO =

k
Zr:l Hl§+r

The penalized spline smoother is described as
My =WWTW + AH)"'WTy. (15)

6.Estimation of Smoothing Parameters
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Specifically, the generalized cross-validation
(GCV) that was proposed by Wahba [27] and Craven
[28] and Wahba is the primary focus of the
smoothing parameter selection that is being
discussed in this study. The generalized cross-
validation (GCV), which optimizes a smoothness
selection criterion, is the optimal value for the
smoothing parameter. By minimizing the GCV
function, it facilitates the selection of smoothing
parameters. The function employs the following
formula:

cerir-£[25)

(16)

Where H of smoothing spline is / + AK , The B-
spline is (BT B + A102,)~1BT, and penalized spline is
F(FTF + A3D)~FT

1I1. RESULT AND DISCUSSION

1.Simulation Study

This section presents a Monte Carlo simulation
conducted using R software programming to
estimate the response variable and evaluate the
performance of Spline methods, including B-spline,
smoothing  spline, and penalized spline.
Accordingly, the explanatory response variable in
the time series data is characterized by periodic
patterns and nonlinear shapes. Therefore, the
periodic patterns observed in time series data are
simulated by using the following function:

zZp = \/Ecos(Zn[l + \/ﬁt]) +e&t=123,..,n (1)

where &, denotes an error term that follows a

normal distribution with a mean of zero and standard
deviations 1,3, and 5, as demonstrated in Figures1-
3.
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Furthermore, the response variables with utilized of
nonlinear shapes are simulated by using the

following function:

mmmmm
()
where &, denotes an
normal distribution with a mean of zero and standard
deviations 1,3, and 5, as demonstrated in Figures4-
6.
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2.Simulation Design
This simulations study utilized five different sample

sizes: n=100,150,200,250, and 300 with three
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different standard deviations values: ¢ = 1,3,and 5.
Furthermore, the data generated were replicated
1000 times for each sample sizes to determine the
best spline nonparametric regression method were
applied to predict time series data characterized by
periodic patterns and nonlinear shapes in the
response variable, with explanatory variable
considered as sequential data.

Therefore, the generalized cross-validation (GCV)
is used to choose the optimal smoothing parameter
estimation as well as the cross-validation method

Penalized spline ~ 0.948713 291

Smoothing
Spline

0.876321 291

1.070494 225 0.996325 225

As seen from Tables 1, 2, and 3, the mean average
absolute error (MAAE) for the periodic data is
slightly different from that for the nonlinear data.
Therefore, the mean average absolute error (MAAE)
for the smoothing spline method is higher than from
other methods, and there are fewer knots utilized.

(CV), while the number of knots is controlled and Furthermore, the increase in standard deviation

specified using cross-validation procedures, which
make sure the curve suitably fits the data points.

corresponds to a rise in the mean average absolute
error (MAAE), demonstrating its effect on the
model's fitting performance. Despite the expansion
of sample sizes, the parameter estimation remained
consistent, indicating its robustness to variations in

3. Simulation Result
Tables 1, 2, and 3 present the values of the Mean
Average Absolute Error (MAAE) and the
number of knot points for spline methods that

sample size. Therefore, it was observed that the
penalized spline method consistently performed
better than the other nonparametric regression
models.

were applied in the periodic patterns and
nonlinear time series data for all sample sizes
100, 150, 200, 250, and 300 under different
values of standard deviation of error as 1, 3, and
5.

Table 2. The Values of Mean Average Absolute Error (Maae)

Table 1. The Values of Mean Average Absolute Error and the Mean of The Knot Points For Different Sample Sizes

(Maae) and The Mean of The Knot Point for Different With o = 3.
Sample Sizes With ¢ = 1.
Nonlinear Periodic patterns Nonlinear Periodic patterns
n Methods No. n Methods No. No.
MAAE  No-of AR of MAAE of MAAE of
knots Kknots knots knots
J0o Penalized spline  0.256635 100 0.231000 100 100" Penalized spline 0474869 100 0.399641 100
i Smoothing Spline 0.599272 65 0.722549 65
Smoothing 0325871 65 0463913 65 e sh
Spline B-Spline 0.508108 140 0.588418 140
B-Spline 0.836252 140 0.629568 140 150  Penalized spline 0.456979 145  0.433687 145
150 Penalized spline 0.478959 145 0.418975 145 Smoothing Splme 0.642273 90 0.6774215 90
Smoothin
Spline £ 0562514 90 0.547623 90 B-Spline 0.556112 193 1.02537778 193
B-Spline 0.992571 193 0.780542 193 200 Penalized spline 0.495113 197 0.744865 197
200 Penalized spline  0.505439 197 0.671000 197 Smoofh‘"g Spline 0936218 120 LI886SL 121
Smoothing 0987871 120 0717160 . B-Spline 1.093273 240 1.100456 240
Spline ’ ) 250  Penalized spline 0.507539 235 0.782214 235
B-Spline 1.094318 240 1.186803 240 Smoothing Spline 0.898173 180 0.978214 180
250 Penalizeid Spline 0.820787 235 0.632654 235 300 B—Spline 1.451603 283 1.187922 283
:;]?no:hmg 0.976725 180 1.212508 180 Penalized spline 0.675219 291 0.822169 291
300 B-Spline 1.720780 283 1.182154 283
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Smoothing Spline 0.906713 225 0.922314

periodic patterns with a component of seasons, as

othe figure 7 illustrates.

Table 3. The Values of Mean Average Absolute Error (Maae) And
the Mean of The Knot Points For Different Sample Sizes With
o=>5.

Nonlinear Periodic patterns
n Methods No. No.
MAAE of MAAE of
knots knots
B-Spline 0.854213 99 0.622154 99
100 Per}ahzed 0317659 100 0.6188974 100
spline
Smf)othmg 0.862231 65 0.9123541 65
Spline
B-Spline 1.022845 140 0.922514 140
Per}ahzed 0725146 145 0.811236 145
150 spline
Smf)othlng 0933126 90 0.988745 90
Spline
B-Spline 0900326 193 0778965 193
Penalized 0.890148 197
200 | ahze 197 0.633145
spline
Sm90th1ng 0.978641 120 0.855263 121
Spline
B-Spline 0.455623 240 1.200354 240
Penalized 0.811879 235 0.844567 235
250 spline
Smoothing 1.003265 180 1.188976 180
Spline
B-Spline 1.233654 283 0.665532 283
Penalized 0974561 291 0.447158 291
300 spline
Smoothing 1.122302 225 0.881135 225
Spline

IV. REAL DATA APPLICATION

Since the beginning, Iraqi oil exports have
significantly contributed to the country's economy.
This is because oil exports contribute to energy
security, primary energy production, industrial
usage, human development, and other areas of
economic growth. The Iraqi economy is extremely
dependent on oil exports. This study included a
dataset of Iraq's oil exports consisting of 228
monthly records from January 2005 to December
2024.The dataset shows a nonlinear trend and

Oll Export of inq

, W (i
|l [’F ""ﬂ‘i' lf i ”

Mikon barrels

|p W
‘..'ot

Fig 7. The Time Series Plot of Oil Export of Iraq

The real data analysis used three non-parametric
approaches to figure out the smoothing function for
Iraq's oil exports. These were the smoothing spline,
the B-spline, and the penalized spline. A sequence
of 228 months refers to the explanatory variable,
while the monthly oil export volume (Million
barrels) serves as the response variable. The Mean
Average Absolute Error (MAAE) is a metric used to
evaluate the precision of a model that averages the
absolute differences between expected and actual
values, and the accuracy of the predicted is
evaluated in percentage terms by The Mean
Absolute percentage error (MAPE). MAAE and
MAPE are used to evaluate forecasting and estimate
precision. Therefore, the following are the equations
used to calculate MAAE and MAPE: MAAE =

ZZZSIyL Pil,i=12,....,22 (17)

MAPE = 228|(yl yl)|><100t—123 .22 (18)

Moreover, The Mean Average Absolute Error
(MAAE) and knot points are approximated from the
spline methods as: smoothing spline, B-spline, and
penalized spline as shown in Figure 8.
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thing Spl B-Sph
i b L . S— Months

Oil export Smoothing Penalized

B-spli
per month spiine spline spline

January
February
March
: ‘ April
w14 @it 2 208 ;0 AN e 02 May
Pensiaed Spline June
* ‘ July
AL ﬁ August
N‘i : september
e October
November
December
January

3365123.78  3164123.18  3154122.20  3465140.08
3275148.65  3163120.05  3155110.85  3385048.75
3250698.22  3150597.32  3140580.25  3360799.22
3350862.98  3150761.99  3147675.88  3460963.18
3150963.11  3050883.23  3040873.20  3260973.10
3450899.88  3440889.45  3439779.95  3480998.95
3516981.85  3514861.80  3513850.70  3618991.99
3475187.66  3455170.55  3450175.99  3495199.86
3514189.47  3513186.35  3512155.05  3519396.97
3315264.87  3313340.60  3312541.75  3418274.99
340014596  3400125.75  3400120.50  3500199.86
3375487.33 336547720  3335455.25  3498697.93
3250142.27  3240130.15  3241125.23  3390182.87
MAPE 11.4897 9.8865 5.7996

Fig 8. The Fitted Nonparametric Regression Model of
Iraq’s Oil Export.

The fitted nonparametric regression models of all
methods, the smoothing spline, B-splines, and
penalized spline, make it hard to pick the best
method, as shown in the figure above. The
outperforming method is then investigated using
mean average absolute error (MAAE). Therefore,
the following Table 4 shows the values of MAAE
and the number of knot points.

Table 4. The Maae Values and Knot Points for
Estimating the Nonparametric Regression Spline

B-spline Penalized spline Smoothing spline

Knots MAAE Knots MAAE Knots MAAE
205 16893.221 220 15487.221 185 19845.554

The results in the table above show that the best knot
points and the mean average absolute error (MAAE)
for nonparametric smoothing methods are B-spline,
smoothing spline, and penalized spline. It is evident
that the penalized spline method is the most accurate
estimate method for this dataset since it provided the
lowest mean average absolute error (MAAE).
Furthermore, the estimate is followed by the use of
these nonparametric regression models for the
purpose of forecasting future values for the next 12
months. The MAPE is then calculated in order to
evaluate the accuracy throughout the period of time
that is given. All methods are shown in Table 5,
which includes the actual data, expected values,
and the MAPE.

Table 5. The Amount of Oil Export Per Month, Forecasting
Values For 12 Months, And Mape

wWww.ijmret.org ISSN: 2456-5

Based on the table above, the most suitable method
for estimating the actual data is the penalized spline
nonparametric regression method. It outperformed
the other techniques in predicting future values and
recorded the lowest mean absolute percentage error
(MAPE) at 5.7996. This indicates that the penalized
spline method provides a high level of accuracy for
future predictions. Additionally, the B-spline
method performed better than the smoothing spline
in terms of prediction accuracy, while the smoothing
spline achieved a MAPE value of 9.8865.
Therefore, Figure 9 compares three non-parametric
regression methods—B-splines, smoothing splines,
and penalized splines—for modelling Iraq's oil
exports over a 12-month period. Both B-splines and
smoothing splines closely follow the actual data
points, while the penalized spline also performs well
but produces a smoother curve. Notably, the
smoothing spline exhibits greater variation and
deviates from the other methods, especially around
months 10 and 11. Overall, B-splines and penalized
splines demonstrate the best fit for accurately
forecasting oil exports.
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Fig 9. Plot of Actual Data and Predictions Over
12 Future Months.

As seen in Table 6, the three non-parametric
regression techniques demonstrate an increasing
number of knots for predicting future data with
respect to the influence of knots in actual datasets.
Regardless, finding the best knots may not always
be significant work, and increasing the number of
knots doesn't always indicate the best method. Based
on this study, smoothing splines and B-splines use
the same knot approach as [29]; however, penalized
splines are better at predicting future values. The
relationship between the explanatory variables and
the response variables could vary at particular points
in the space of the explanatory variables, which are
referred to as knots. They are frequently employed
in spline-based nonparametric regression methods,
such as cubic splines and piecewise linear
regression, offering significant advantages in
enhancing model flexibility and accuracy.

Table 6 .The Mean Average Absolute Error (MAAE), Mean
Absolute Percentage Error (MAPE) and the Number of Knot

Knot

50
100
150
200

Points For Iraq’s Oil Export.
B-spline Smoothing spline Penalized spline
MAAE MAPE MAAE MAPE MAAE MAPE
75,8545.1 35986  95,4658.1 30.963 60,8865.2  30.554
60,3567.4  33.265 90,4625.7 27.125 53,4469.5  26.145
57,1548.6  33.154 88,9875.2 22189  47,4458.1  21.112
55,5241.9 32.758 88,6532.1 17.332 4188742  15.789

V. CONCLUSIONS

This study is significant as it compares popular

splines, and penalized splines. Standard deviations
and sample sizes are used to simulate periodic
patterns and nonlinear forms. In addition, use of a
real dataset, such as Iraq's oil export, resulted in
fitted model results that were similar to those
derived from the simulated data. As noted, penalized
splines perform well for predicting future values.
Although these advantages, there are difficulties
with nonparametric regression, such as the risk of
excess fitting, the need for higher sample sizes, and
additional analyzing complexity. Future studies
should concentrate on investigating other
nonparametric regression methods, such as kernel
smoothing or local polynomial regression, as well as
increasing the number of knot points to increase
model accuracy. It would be possible to test these
methods on datasets with various complexities. To
conduct a complete assessment of forecasting
accuracy, it will also be necessary to consider the
computing efficiency of larger sets of data and to use
other kinds of error measures, such as root mean
square error (RMSE) or mean absolute error (MAE).
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