Parameters and Knot Points Estimation for Spline Methods Applied in Time Series data

Amjed Mohammed Sadek ¹, Asmaa Salah Alddin Sulaiman²,

¹ Department of Mathematics, Faculty of Basic Education, Telafer University, Mosul, Telafer, , Iraq ² Department of Mathematics, Faculty of Basic Education, Telafer University, Mosul, Telafer, , Iraq

ABSTRACT: The purpose of this study is to investigate and contrast a number of nonparametric regression approaches, such as penalized spline methods, B-splines, and smoothing splines. Applying these techniques to simulated and actual datasets, such as Iraqi oil export data, focuses on parameter estimations and figuring out the optimal knot points for predicting periodic and nonlinear trends. The knot points are controlled and specified using generalized cross-validation (GCV) procedures to ensure an accurate curve fit to the data points. For time series data with nonlinear forms and periodic patterns in the response variable, this research uses nonparametric regression with sequential data in the explanatory variable. We perform research on simulated data that exhibits periodic patterns similar to economic periods, as well as on nonlinear data that uses complicated equations to express the interactions between variables. Simulations were conducted across a range of standard deviations and sample sizes. The efficiency of parameter estimation in these synthetic datasets was quantified using the mean absolute average error (MAME). For the empirical application, the parameters of the nonparametric regression models were estimated using monthly Iraqi oil export data, with the MAME employed as the evaluation metric. The effectiveness of these techniques is further evaluated in forecasting future values by calculating the mean absolute percentage error (MAPE). Among the approaches, the penalized spline consistently achieves the lowest average mean squared error across all levels of standard deviation and sample size in the simulated data, while also demonstrating robust forecasting performance. In contrast, the smoothing spline outperforms the other methods in terms of parameter estimation accuracy.

KEYWORDS -knot points, parameter Estimation, B-Spline, Smoothing Spline, Penalized Spline.

I. INTRODUCTION

A statistical method known as regression analysis is used to identify the relationship between an explanatory variable and a response variable. This method allows predictions regarding the dependent variable based on the independent variable. The assumptions that underpin regression analysis are often relevant only for specific variables in particular contexts. When a parametric model is inaccurate, it can lead to misinterpretations that can significantly misguide

decision-making. Moreover, there are instances where an appropriate parametric model simply does not exist [1], [2]. To overcome these limitations, employing nonparametric regression techniques becomes a compelling and effective solution. These methods effectively estimate parameters in cases were data exhibit nonlinear relationships. The technique of creating a smoothing curve from the available information is known as the smoothing method. This approach is an excellent alternative when conventional parametric models fall short or

www.ijmret.org ISSN: 2456-5628 Page 1

when the assumptions underlying regression analysis are not satisfied, ensuring you have reliable results in challenging scenarios.[3].

Nonparametric regression is a useful technique in many research and data analysis fields because of its various advantages. The model can capture complicated and nonlinear relationships that parametric approaches would miss because of its flexibility. Observed that nonlinear models facilitated the accurate fitting of generalized additive models using nonparametric regression approaches. For handling symmetric distributions, robust nonparametric regression techniques were devised. These approaches are especially helpful in situations where the relationships in the data are not well characterized or if they change between various sections. This method permits precise forecasts that, without imposing strict limitations, capture complex patterns and variations in the data.[4]

In nonparametric regression techniques, a response variable and an explanatory variable or more are usually used. Instead of estimating regression coefficients, it mainly focuses on estimating a smoothing function that gives a better accurate representation of the data. This smoothing function assists in identifying the fundamental trend that occurs between one or more explanatory variables and the response variable. The scatterplot smoothing approach, which is used when there is only one explanatory variable, improves the scatterplot's visual clarity and facilitates the identification of patterns in the relationship between the explanatory and response variables.[5] Nonparametric regression is employed to determine the relationship between variables without presuming a specific functional shape, and these estimated covariates are then incorporated into models where several equations are solved concurrently.[6]

In the context of nonparametric regression, there are several methods used to estimate nonparametric regression models, including the local polynomial regression method, the smoothing splines method, the regression spline method, the kernel smoothing method, and the penalized splines method.[7] In addition, nonparametric regression models were specially modified for use in time series analysis, making it possible to depict the

possibility of nonlinear interactions. Furthermore, time series analysis has seen an adoption of nonparametric regression models, which permit the modelling of possible nonlinear relations. For assessing smooth structural changes in time series models, Chen and Hong [8] suggested nonparametric estimate methods.

The principal aim of this study is to conduct a systematic evaluation and comparative analysis of several nonparametric regression techniques namely, smoothing splines, B-splines, and penalized splines—within the context of time series data characterized by cyclic patterns and nonlinear dynamics. Through the application of these methods, the study seeks to enhance the accuracy of both forecasting and parameter estimation, particularly in settings where conventional parametric models are insufficient to capture the underlying complexity of the data. This study's significant addition is that it applies these nonparametric approaches to real-world and simulated datasets, focusing on the monthly oil exports in Iraq. This method demonstrates the importance of nonparametric regression addressing real-world issues associated with energy forecasting. To provide light on the best approaches for various types of data, the study compares and contrasts these methods using measurements of performance, including mean absolute average error (MAAE) and mean absolute percentage error (MAPE).In addition to providing a thorough analysis in which the selection of knots and smoothing parameters might affect prediction accuracy, this study advances the discipline of nonparametric regression by showcasing the adaptability of these models in capturing intricate, nonlinear relationships. These approaches are essential in various sectors, including engineering, economics, and environmental research. The results have important implications for future work in time series analysis, especially in areas where data do not follow parametric assumptions.

The structure of this paper is described as follows: Section 2 presents the related work. Section 3, illustrates the methods and procedures that were used in this study: regression spline, the B-spline method, the smoothing spline method, and penalized spline method, as well as the estimation of smoothing parameters. Section 4 displays the study

of simulated data analysis and provides results. The final section provides an explained conclusion of the findings that were obtained from the simulation study and real data application.

II. MATERIALS AND METHODS

1.Related Work

Nonparametric regression estimates typically exhibit visible divergence from their parametric counterparts due to fundamental differences in their underlying assumptions. Unlike parametric methods that impose strong a priori assumptions regarding the functional form of the relationship between variables, nonparametric regression employs flexible models. This inherent flexibility enables nonparametric estimates to effectively capture intricate patterns and local variations present within the data [9]. Consequently, nonparametric approaches demonstrate a greater capacity to adapt to the inherent structure of the data, potentially yielding more accurate and reliable predictions compared to parametric methods constrained by prespecified functional forms. [5]

In contrast, parametric approaches often presuppose a certain distribution for the data. EL-Morshedy et al.[10] highlighted the significance of parameter estimation in regression models by introducing the discrete Burr-Hatke distribution. Nevertheless, nonparametric regression is appropriate for analyzing data with uncertain or nonstandard distributions because it does not depend on such presumptions. Gal et al. [11] suggested a technique for estimating parameters in nonparametric regression using residuals based on symmetric and nonsymmetric distributions. In addition, many parametric approaches are not as effective as nonparametric regression when it comes to dealing with outliers and influencing data. The model is more resistant to extreme values because of its concentration on local data points, which means that outliers have less of an impact on the overall fit. To reduce the possibility of model misspecification, Cizek and Sadikoglu [12] studied nonparametric regression's robustness and found that it needs just modest identification assumptions.

Nonparametric regression is a well-known smoothing approach that has been used recently in several different fields of study. Demir and Toktamis [13] investigated the adaptive kernel estimator for long-tailed and multimodal distributions and the nonparametric kernel estimator with bandwidth. Shang and Cheng [14] addressed essential issues in the use of distribution algorithms by developing a smoothing spline approach and computational trade-offs. To predict the yield curve, Feng and Qian [15] presented a natural cubic spline model that is dynamic and uses a two-stage process. Among the many uses of B-spline functions that Than and Tjahjowidodo [16] brought to light were their implementations in CAD, numerical control systems, and computer graphics. Xiao [17] investigated penalized splines extensively, including B-splines and an integrated squared derivative penalty, in the context of large-sample asymptotic theory.

2.Regression Spline

The estimate of the relationship between the function of explanatory variables (m (x_i)) and response variables (y_i) is the procedure that is involved in nonparametric regression. In this paper, we will offer an overview of some of the more common techniques that are used in nonparametric regression models:

$$y_i = m(z_i) + \varepsilon_i, i = 1, 2, \dots, n \tag{1}$$

Where ε_i represents the error for each observation. The smoothing technique is the basis of the non-parametric regression, which results in a smoother. It is a technique for predicting the function of predictor variables as well as can be used to improve the appearance of trends in the plot which can be achieved with the support of a smoother. According to Eubank [18], who first proposed the regression spline concept, a set of locations defines neighborhoods:

$$\xi_0, \xi_1, \xi_2, \dots, \xi_m, \xi_{m+1}$$
 (2)

In the range of interval [a,b], where $a=\xi_0<\xi_1<\dots<\xi_m<\xi_{m+1}< b$. The term for these specific locations is denoted as knots, and $\xi_r, r=1,2,...,m$ are called interior knots. Therefore, A regression spline may be formed with the m-th degree truncated power basis with K knots ξ_1,ξ_2,\ldots,ξ_m :

$$1, z_i, \dots, z_i^m, (z_i - \xi_1)_+^m, \dots, (z_i - \xi_m)_+^m, p = M + m + 1$$
 (3)

Where u_+^m refer to the m-th power of the positive part of u, where $u_+ = max(0, u)$. The first (m + 1) basis functions of the truncated power basis (3) are polynomials of degree up to m, and the others are all the truncated power function of the degree m. Therefore, A regression spline can be described as

$$m(x_i) \sum_{r=0}^{p} \varphi_r z_i^r + \sum_{j=1}^{p} \varphi_{k+j} (z_i - \xi)_+^p$$
 (4)

Where φ_0 , φ_1 ,...., φ_{k+K} is the unknown regression coefficient that need to be determined with an appropriate loss minimization method.[19] [20].

3.B-Spline Regression Method

The spline model is a piecewise polynomial with segmented characteristics at intervals k produced at knot points. Points that represent changes in the data in subintervals are referred to as knot points. When the spline order is high, multiple knots or knots that are too close together will generate a matrix that is practically singular in computation, which means that normal equations cannot be solved. This is the most significant limitation of the spline method. The problem with B-splines is that they cannot be assessed directly basis since their can only be recursively[21] .Therefore, The B-splines basis function may be defined recursively as follows:

$$B_s^u(z_i) = \begin{cases} 1, \xi_s < z < \xi_{s+1} \\ 0 \text{ otherwise} \end{cases}$$
 (5)

Where $B_s^u(z_i)$ is the *sth* of the B-splines basis function of the order u for the knot points sequence ξ .[22] For the piecewise polynomial function, Liu et al. [23] computed B-splines of any degree using an algorithm. Evaluating the function of B-splines at the *uth* degree from the (u-1) th degree can be described as

$$B_s^u(z_i) = \frac{z_i - \xi_s}{\xi_{s+u-1} - \xi_s} B_s^{u-1} + \frac{\xi_{s+u} - z_i}{\xi_{s+u} - \xi_{s+1}} B_{s+1}^{u-1} \quad (6)$$

Where the basis of order u with knot points $\{B_s^u | s = 1, 2, ..., K + u + 1\}$. A B-spline representation of the nonparametric regression model can be described as follows:

 $y_i = \sum_{s=1}^k B_s^m(z_i) \ \gamma_s + \varepsilon_i, i = 1, 2, ..., n.$ (7) Hence, the following is the fitting of the function of B-splines assessed at the knots ξ_s , where s = 1, ..., K:

$$\widehat{m}(z_i) = \sum_{s=1}^k B_s^m(z_i) \gamma_s \tag{8}$$

Moreover, the criteria for penalized least squares are as follows:

$$PLS = (y - B\gamma)^{T}(y - B\gamma) + \lambda\gamma\Omega_{k}\gamma$$

Where $\{B\}_{is} = B_s^m(z_i), \{\Omega_k\}_{is} = \int B_i''(z_i)B_s''(z_i)dx, \gamma = (\gamma_1,\ldots,\gamma)^T$ is the coefficient regression vector of the B-spline. Therefore, the solution of the function of the B-splines, denoted as \widehat{m}_{λ} , to the problem of minimization of the PLS involves the following:

$$\widehat{m}_{\lambda} = (B^T B + \lambda \Omega_K)^{-1} B^T \tag{9}$$

4. Smoothing Spline Regression Method

The smoothing spline method's approximated process involves fitting a function of predictor variables $(m(z_i))$ by minimizing the penalized least squares criteria, which is expressed by

$$PLS = RSS + \lambda \int_a^b \{m''(z_i)\}^2 \, dx \qquad (10)$$
 Where the first part RSS = $\sum_{i=1}^n \{y_i - m(z_i)\}^2$ is the residual of square, and second part $\lambda \int_a^b \{m''(z_i)\}^2 \, dx$ is the roughness penalty in the interval [a,b], This is a curve metric known as the smoothing parameter (λ) . Therefore, the second part (roughness penalty) can be written in the matrix form

$$\lambda \int_a^b \{m''(z_i)\}^2 dx = m^T H m$$
 (11)

Where $m = (m_1, m_2,, m_k)^T$, $m_r = m(\xi_r)$, r = 1,2,...,k. [24] generally, k refers to the number of knots, and $\xi_1,....,\xi_k$ are all the knot points of the smoothing spline such that may be arranged in ascending order as

$$-\infty \le a < \xi_1 < \xi_2 < \dots < \xi_k < b \le \infty$$

Therefore, the matrix H can be written as follows

$$H = C D^{-1}C^T \tag{12}$$

Where C is a matrix as a $p \times (p-2)$ matrix, and D is a matrix as a $(p-2)\times (p-2)$ Therefore, from (11) and (12), the penalized least square criterion can be described as

$$\|y - wm\|^2 + \lambda m^T Hm \tag{13}$$

www.ijmret.org ISSN: 2456-5628 Page 4

Where $y = (y_1, y_2, ..., y_n)^T$ are the response variable, and $W = (w_{ir})$ is an $n \times p$ incidence matrix with $w_{ir} = 1$ if $z_i = \xi_r$ and otherwise, and $||y - mw||^2 = \sum_{i=1}^n \{y_i - f(x_i)\}^2$ [25] Consequently, the smoothing spline function (\widehat{m}_{λ}) evaluated at knots ξ_r r = 1, 2, ..., k may be expressed explicitly as follows:

$$\widehat{m}_{\lambda} = (WW^T + \lambda H)^{-1}W^T y. \tag{14}$$

5. Penalized Spline Regression Method

The smoothing spline approach requires calculating an integral that measures the function's roughness, while the penalized spline method addresses this issue by employing a truncated power basis, as shown in Equation (3).

Let $\delta_r(i) = (\delta_1(i), \dots, \delta_r(i))^T$ represent the degree k truncated power basis with K knots $\xi_1, \xi_2, \dots, \xi_K$ subsequently, we may articulate $m(z_i)$ in equation (1) as $\delta(i)_r \theta$, where $\theta = [\theta_0, \theta_1, \dots, \theta_{k+k}]^T$ is the vector that represents the corresponding coefficient. [26] Let H be a $p \times p$ diagonal matrix, where the first k+1 diagonal elements are set to zero and the remaining diagonal entries are set to one. Therefore, the matrix H can be given as

$$H = \begin{bmatrix} 0 & 0 \\ 0 & I_r \end{bmatrix}$$

Moreover, the penalized smoothing spline is denoted as $\hat{m}_{\lambda} = \delta_r(i)^T \hat{\theta}$, where the value of $\hat{\theta}$ is the PLS criteria that minimizes the following:

Penalized least squares (PLS) = $(y - W\theta)^T (y - W\theta) + \lambda \theta H\theta$

Where $W = (\delta_r(z_1), ..., \delta_r(z_n))^T$, and $\theta H \theta = \sum_{r=1}^k \theta_{k+r}^2$

The penalized spline smoother is described as $\widehat{m}_{\lambda} = W(W^TW + \lambda H)^{-1}W^Ty$. (15)

6. Estimation of Smoothing Parameters

Specifically, the generalized cross-validation (GCV) that was proposed by Wahba [27] and Craven [28] and Wahba is the primary focus of the smoothing parameter selection that is being discussed in this study. The generalized cross-validation (GCV), which optimizes a smoothness selection criterion, is the optimal value for the smoothing parameter. By minimizing the GCV function, it facilitates the selection of smoothing parameters. The function employs the following formula:

$$GCV(\lambda) = \sum_{t=1}^{n} \left(\frac{y_t - \hat{y}_t}{n - tr(H)} \right)$$

(16)

Where H of smoothing spline is $I+\lambda K$, The B-spline is $(B^TB+\lambda\Omega_K)^{-1}B^T$, and penalized spline is $F(F^TF+\lambda^3D)^{-1}F^T$

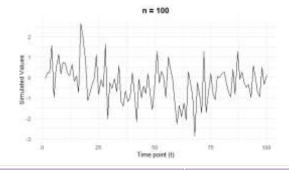
III. RESULT AND DISCUSSION

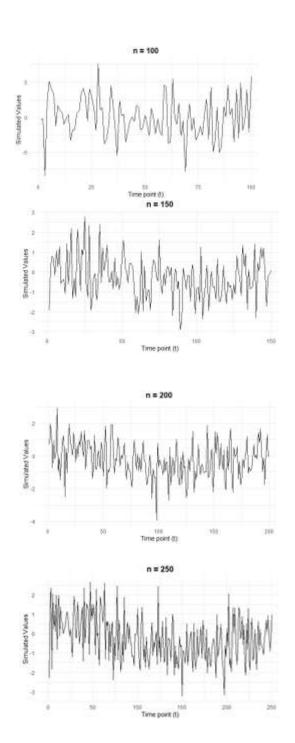
1.Simulation Study

This section presents a Monte Carlo simulation conducted using R software programming to estimate the response variable and evaluate the performance of Spline methods, including B-spline, smoothing spline, and penalized spline. Accordingly, the explanatory response variable in the time series data is characterized by periodic patterns and nonlinear shapes. Therefore, the periodic patterns observed in time series data are simulated by using the following function:

$$z_t = \sqrt{m_t} \cos(2\pi \left[1 + \sqrt{m_t}\right]) + \varepsilon_t t = 1, 2, 3, \dots, n \quad (1)$$

where \mathcal{E}_t denotes an error term that follows a normal distribution with a mean of zero and standard deviations 1,3, and 5, as demonstrated in Figures1-3.





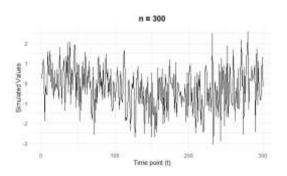
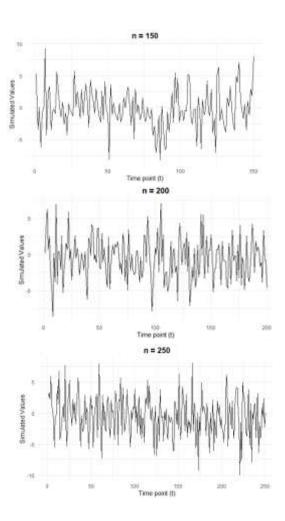


Fig.1 The Plot of Periodic Patterns of Time Series for Different Sample Sizes With $\sigma=1$



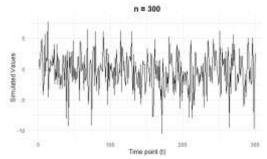


Fig 2. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With $\sigma=3$

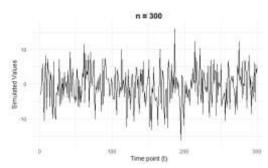
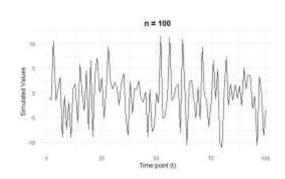
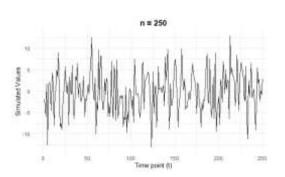


Fig 3. The Plot of Periodic Patterns of Time Series for Different Sample Sizes With $\sigma=5$



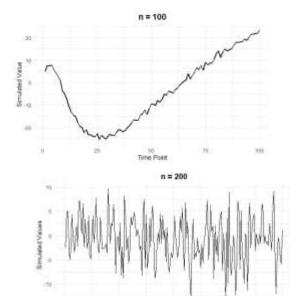
n = 150



Furthermore, the response variables with utilized of nonlinear shapes are simulated by using the following function:

$$z_t = 2\sqrt{m_t} \sin\left(2\pi \left[\frac{1+20}{m_t+20}\right]\right) + \varepsilon_t, t = 1, 2, \dots, n$$
(2)

where \mathcal{E}_t denotes an error term that follows a normal distribution with a mean of zero and standard deviations 1,3, and 5, as demonstrated in Figures4-6.



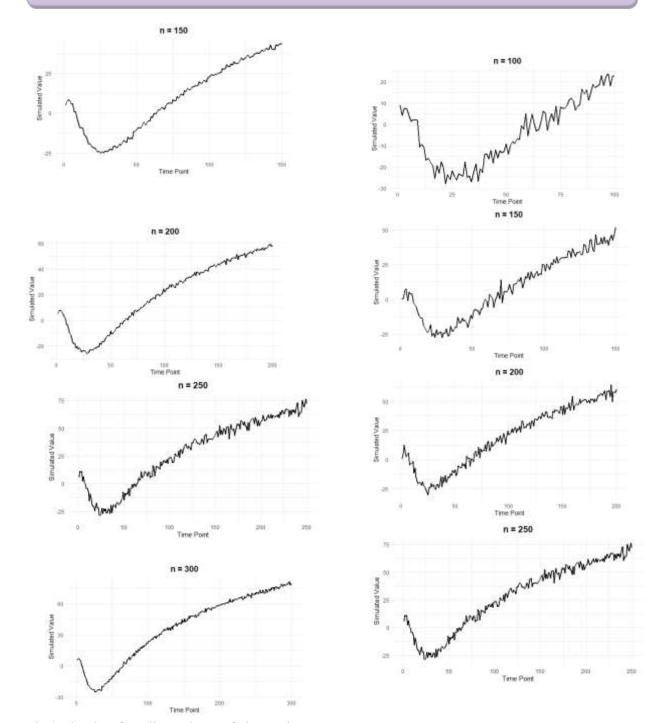


Fig 4. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With $\sigma=1$

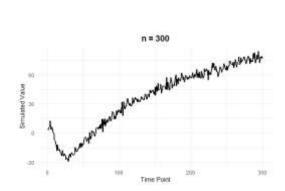
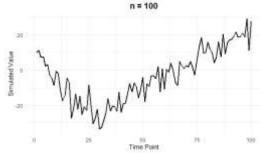
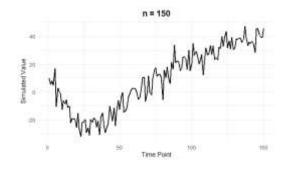
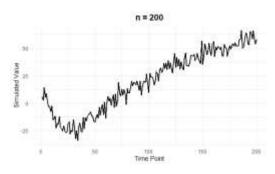
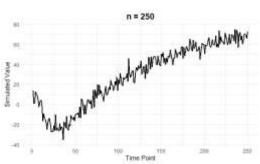


Fig5. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With $\sigma = 3$.









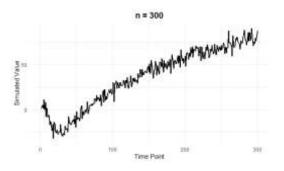


Fig 6. The Plot of Nonlinear Shapes of Time Series for Different Sample Sizes With $\sigma = 5$.

2.Simulation Design

This simulations study utilized five different sample sizes: n=100,150,200,250, and 300 with three

different standard deviations values: $\sigma = 1,3,$ and 5. Furthermore, the data generated were replicated 1000 times for each sample sizes to determine the best spline nonparametric regression method were applied to predict time series data characterized by periodic patterns and nonlinear shapes in the response variable, with explanatory variable considered as sequential data.

Therefore, the generalized cross-validation (GCV) is used to choose the optimal smoothing parameter estimation as well as the cross-validation method (CV), while the number of knots is controlled and specified using cross-validation procedures, which make sure the curve suitably fits the data points.

3. Simulation Result

Tables 1, 2, and 3 present the values of the Mean Average Absolute Error (MAAE) and the number of knot points for spline methods that were applied in the periodic patterns and nonlinear time series data for all sample sizes 100, 150, 200, 250, and 300 under different values of standard deviation of error as 1, 3, and 5.

Table 1. The Values of Mean Average Absolute Error (Maae) and The Mean of The Knot Point for Different Sample Sizes With $\sigma=1$.

n		Nonlii	near	Periodic patterns	
	Methods	MAAE	No. of knots	MAAE	No. of knots
	B-Spline	0.623547	99	0.277846	99
100	Penalized spline	0.256635	100	0.231000	100
	Smoothing Spline	0.325871	65	0.463913	65
	B-Spline	0.836252	140	0.629568	140
150	Penalized spline	0.478959	145	0.418975	145
130	Smoothing Spline	0.562514	90	0.547623	90
	B-Spline	0.992571	193	0.780542	193
200	Penalized spline	0.505439	197	0.671000	197
	Smoothing Spline	0.987871	120	0.717160	121
250	B-Spline	1.094318	240	1.186803	240
	Penalized spline	0.820787	235	0.632654	235
	Smoothing Spline	0.976725	180	1.212508	180
300	B-Spline	1.720780	283	1.182154	283

Penalized spline	0.948713	291	0.876321	291
Smoothing Spline	1.070494	225	0.996325	225

As seen from Tables 1, 2, and 3, the mean average absolute error (MAAE) for the periodic data is slightly different from that for the nonlinear data. Therefore, the mean average absolute error (MAAE) for the smoothing spline method is higher than from other methods, and there are fewer knots utilized. Furthermore, the increase in standard deviation corresponds to a rise in the mean average absolute error (MAAE), demonstrating its effect on the model's fitting performance. Despite the expansion of sample sizes, the parameter estimation remained consistent, indicating its robustness to variations in sample size. Therefore, it was observed that the penalized spline method consistently performed better than the other nonparametric regression models.

Table 2. The Values of Mean Average Absolute Error (Maae) and the Mean of The Knot Points For Different Sample Sizes With $\sigma = 3$.

		Nonlinear		Periodic patterns	
n	Methods	MAAE	No.	MAAE	No.
		MAAE	oi knots	MAAE	of knots
	B-Spline	0.743992	99	0.554278	99
100	Penalized spline	0.474869	100	0.399641	100
	Smoothing Spline	0.599272	65	0.722549	65
	B-Spline	0.508108	140	0.588418	140
150	Penalized spline	0.456979	145	0.433687	145
	Smoothing Spline	0.642273	90	0.6774215	90
	B-Spline	0.556112	193	1.02537778	193
200	Penalized spline	0.495113	197	0.744865	197
	Smoothing Spline	0.936218	120	1.188651	121
	B-Spline	1.093273	240	1.100456	240
250	Penalized spline	0.507539	235	0.782214	235
	Smoothing Spline	0.898173	180	0.978214	180
300	B-Spline	1.451603	283	1.187922	283
500	Penalized spline	0.675219	291	0.822169	291

Smoothing Spline 0.906713 225 0.922314

periodic patterns with a component of seasons, as the figure 7 illustrates.

Table 3. The Values of Mean Average Absolute Error (Maae) And the Mean of The Knot Points For Different Sample Sizes With $\sigma = 5$.

		Nonlin	ear	Periodic patterns	
n	Methods		No.		No.
		MAAE	of	MAAE	of
			knots		knots
	B-Spline	0.854213	99	0.622154	99
100	Penalized spline	0.317659	100	0.6188974	100
	Smoothing Spline	0.862231	65	0.9123541	65
	B-Spline	1.022845	140	0.922514	140
150	Penalized spline	0.725146	145	0.811236	145
	Smoothing Spline	0.933126	90	0.988745	90
200	B-Spline	0.900326	193	0.778965	193
	Penalized spline	0.890148	197	0.633145	197
	Smoothing Spline	0.978641	120	0.855263	121
	B-Spline	0.455623	240	1.200354	240
	Penalized	0.811879	235	0.844567	235
250	spline				
	Smoothing Spline	1.003265	180	1.188976	180
300	B-Spline	1.233654	283	0.665532	283
	Penalized spline	0.974561	291	0.447158	291
	Smoothing Spline	1.122302	225	0.881135	225

IV. REAL DATA APPLICATION

Since the beginning, Iraqi oil exports have significantly contributed to the country's economy. This is because oil exports contribute to energy security, primary energy production, industrial usage, human development, and other areas of economic growth. The Iraqi economy is extremely dependent on oil exports. This study included a dataset of Iraq's oil exports consisting of 228 monthly records from January 2005 to December 2024. The dataset shows a nonlinear trend and

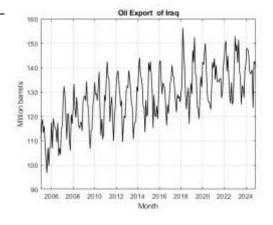
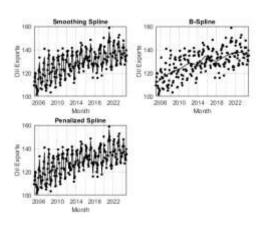


Fig 7. The Time Series Plot of Oil Export of Iraq

The real data analysis used three non-parametric approaches to figure out the smoothing function for Iraq's oil exports. These were the smoothing spline, the B-spline, and the penalized spline. A sequence of 228 months refers to the explanatory variable, while the monthly oil export volume (Million barrels) serves as the response variable. The Mean Average Absolute Error (MAAE) is a metric used to evaluate the precision of a model that averages the absolute differences between expected and actual values, and the accuracy of the predicted is evaluated in percentage terms by The Mean Absolute percentage error (MAPE). MAAE and MAPE are used to evaluate forecasting and estimate precision. Therefore, the following are the equations used to calculate MAAE and MAPE: MAAE = $\frac{1}{228}\sum_{i=1}^{228}|y_i-\hat{y}_i|, i=1,2,\ldots,22$

$$MAPE = \frac{1}{228} \sum_{t=1}^{228} \left| \frac{(y_t - \hat{y}_i)}{y_i} \right| \times 100, t = 1, 2, 3, \dots, 22 \quad (18)$$

Moreover, The Mean Average Absolute Error (MAAE) and knot points are approximated from the spline methods as: smoothing spline, B-spline, and penalized spline as shown in Figure 8.



Months	Oil export	B-spline	Smoothing	Penalized
Wollins	per month	Б-зринс	spline	spline
January	3365123.78	3164123.18	3154122.20	3465140.08
February	3275148.65	3163120.05	3155110.85	3385048.75
March	3250698.22	3150597.32	3140580.25	3360799.22
April	3350862.98	3150761.99	3147675.88	3460963.18
May	3150963.11	3050883.23	3040873.20	3260973.10
June	3450899.88	3440889.45	3439779.95	3480998.95
July	3516981.85	3514861.80	3513850.70	3618991.99
August	3475187.66	3455170.55	3450175.99	3495199.86
September	3514189.47	3513186.35	3512155.05	3519396.97
October	3315264.87	3313340.60	3312541.75	3418274.99
November	3400145.96	3400125.75	3400120.50	3500199.86
December	3375487.33	3365477.20	3335455.25	3498697.93
January	3250142.27	3240130.15	3241125.23	3390182.87
-	MAPE	11.4897	9.8865	5.7996

Fig 8. The Fitted Nonparametric Regression Model of Iraq's Oil Export.

The fitted nonparametric regression models of all methods, the smoothing spline, B-splines, and penalized spline, make it hard to pick the best method, as shown in the figure above. The outperforming method is then investigated using mean average absolute error (MAAE). Therefore, the following Table 4 shows the values of MAAE and the number of knot points.

Table 4. The Maae Values and Knot Points for Estimating the Nonparametric Regression Spline

B-spline		Penalize	d spline	Smoothing spline	
Knots	MAAE	Knots	MAAE	Knots	MAAE
205	16893.221	220	15487.221	185	19845.554

The results in the table above show that the best knot points and the mean average absolute error (MAAE) for nonparametric smoothing methods are B-spline, smoothing spline, and penalized spline. It is evident that the penalized spline method is the most accurate estimate method for this dataset since it provided the lowest mean average absolute error (MAAE). Furthermore, the estimate is followed by the use of these nonparametric regression models for the purpose of forecasting future values for the next 12 months. The MAPE is then calculated in order to evaluate the accuracy throughout the period of time that is given. All methods are shown in Table 5, which includes the actual data, expected values, and the MAPE.

Table 5. The Amount of Oil Export Per Month, Forecasting Values For 12 Months, And Mape

Based on the table above, the most suitable method for estimating the actual data is the penalized spline nonparametric regression method. It outperformed the other techniques in predicting future values and recorded the lowest mean absolute percentage error (MAPE) at 5.7996. This indicates that the penalized spline method provides a high level of accuracy for future predictions. Additionally, the B-spline method performed better than the smoothing spline in terms of prediction accuracy, while the smoothing spline achieved a MAPE value of 9.8865.

Therefore, Figure 9 compares three non-parametric regression methods—B-splines, smoothing splines, and penalized splines—for modelling Iraq's oil exports over a 12-month period. Both B-splines and smoothing splines closely follow the actual data points, while the penalized spline also performs well but produces a smoother curve. Notably, the smoothing spline exhibits greater variation and deviates from the other methods, especially around months 10 and 11. Overall, B-splines and penalized splines demonstrate the best fit for accurately forecasting oil exports.

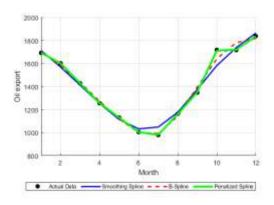


Fig 9. Plot of Actual Data and Predictions Over 12 Future Months.

As seen in Table 6, the three non-parametric regression techniques demonstrate an increasing number of knots for predicting future data with respect to the influence of knots in actual datasets. Regardless, finding the best knots may not always be significant work, and increasing the number of knots doesn't always indicate the best method. Based on this study, smoothing splines and B-splines use the same knot approach as [29]; however, penalized splines are better at predicting future values. The relationship between the explanatory variables and the response variables could vary at particular points in the space of the explanatory variables, which are referred to as knots. They are frequently employed in spline-based nonparametric regression methods, such as cubic splines and piecewise linear regression, offering significant advantages in enhancing model flexibility and accuracy.

Table 6 .The Mean Average Absolute Error (MAAE), Mean Absolute Percentage Error (MAPE) and the Number of Knot Points For Iraq's Oil Export.

Knot	B-spline		Smoothing spline		Penalized spline	
	MAAE	MAPE	MAAE	MAPE	MAAE	MAPE
50	75,8545.1	35.986	95,4658.1	30.963	60,8865.2	30.554
100	60,3567.4	33.265	90,4625.7	27.125	53,4469.5	26.145
150	57,1548.6	33.154	88,9875.2	22.189	47,4458.1	21.112
200	55,5241.9	32.758	88,6532.1	17.332	41,8874.2	15.789

V. CONCLUSIONS

This study is significant as it compares popular nonparametric regression methods for simulated and real-world data, such as smoothing splines, B- splines, and penalized splines. Standard deviations and sample sizes are used to simulate periodic patterns and nonlinear forms. In addition, use of a real dataset, such as Iraq's oil export, resulted in fitted model results that were similar to those derived from the simulated data. As noted, penalized splines perform well for predicting future values. Although these advantages, there are difficulties with nonparametric regression, such as the risk of excess fitting, the need for higher sample sizes, and additional analyzing complexity. Future studies should concentrate on investigating nonparametric regression methods, such as kernel smoothing or local polynomial regression, as well as increasing the number of knot points to increase model accuracy. It would be possible to test these methods on datasets with various complexities. To conduct a complete assessment of forecasting accuracy, it will also be necessary to consider the computing efficiency of larger sets of data and to use other kinds of error measures, such as root mean square error (RMSE) or mean absolute error (MAE).

REFERENCES

- [1] A. M. Sadek and L. M. Ali, "Developing a Mixed Nonparametric Regression Modeling (simulation Study)," *J. Theor. Appl. Inf. Technol.*, vol. 101, no. 21, pp. 6988–7000, 2023.
- [2] H. M. Khalaf and A. S. A. Sulaiman, "New Method for Finding the Weight Distribution and Spectrum by Testing the Optimal Solution of the Points in PG (3,2)," *J. Theor. Appl. Inf. Technol.*, vol. 102, no. 9, pp.3725-3729,2024.
- [3] M. Salibian-Barrera, "Robust nonparametric regression: review and practical considerations," *Econom. Stat.*, 2023, Accessed: Apr. 19, 2025.
- [4] S. Amodio, M. Aria, and A. D'Ambrosio, "On concavity in nonlinear and nonparametric regression models," *Statistica*, vol. 74, no. 1, pp. 85–98, 2014.
- [5] A. M. Sadek and L. A. Mohammed, "Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression," *JOIV Int. J. Inform. Vis.*, vol. 8, no. 3, pp. 1352, Sep. 2024, Doi: 10.62527/joiv.8.3.2430.

- [6] R. L. Eubank, *Nonparametric regression and spline smoothing*. CRC press, 1999.
- [7] W. Härdle, *Applied nonparametric regression*, no. 19. Cambridge university press, 1990.
- [8] B. Chen and Y. Hong, "Testing for smooth structural changes in time series models via nonparametric regression," *Econometrica*, vol. 80, no. 3, pp. 1157–1183, 2012.
- [9] J. Kloke and J. McKean, *Nonparametric* statistical methods using *R*. Chapman and Hall/CRC, 2024.
- [10] M. El-Morshedy, M. S. Eliwa, and E. Altun, "Discrete Burr-Hatke distribution with properties, estimation methods and regression model," *IEEE Access*, vol. 8, pp. 74359–74370, 2020.
- [11] Y. Gai, X. Zhu, and J. Zhang, "Testing symmetry of model errors for nonparametric regression models by using correlation coefficient1," *Commun. Stat.-Simul. Comput.*, vol. 51, no. 4, pp. 1436–1453, 2022.
- [12] P. Čížek and S. Sadıkoğlu, "Robust nonparametric regression: A review," *Wiley Interdiscip. Rev. Comput. Stat.*, vol. 12, no. 3, pp. e1492, 2020.
- [13] S. Demir and Ö. Toktamiş, "On the adaptive Nadaraya- Watson kernel regression estimators," *Hacet. J. Math. Stat.*, vol. 39, no. 3, pp. 429–437, 2010.
- [14] Z. Shang and G. Cheng, "Computational limits of a distributed algorithm for smoothing spline," *J. Mach. Learn. Res.*, vol. 18, no. 108, pp. 1–37, 2017.
- [15] P. Feng and J. Qian, "Forecasting the yield curve using a dynamic natural cubic spline model," *Econ. Lett.*, vol. 168, pp. 73–76, 2018.
- [16] D. Van Than and T. Tjahjowidodo, "A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting," *PLoS One*, vol. 12, no. 3, pp. 1–24, 2017.
- [17] L. Xiao, "Asymptotic theory of penalized splines," *Electron J Stat.*, vol. 13, no. 1, pp. 747–794, 2019, Doi: 10.1214/19-EJS1541.
- [18] D. Ruppert, "Nonparametric regression and spline smoothing". 2001.

- [19] A. Perperoglou, W. Sauerbrei, M. Abrahamowicz, and M. Schmid, "A review of spline function procedures in R," *BMC Med. Res. Methodol.*, vol. 19, no. 1, p. 46, Mar. 2019, Doi: 10.1186/s12874-019-0666-3.
- [20] L. C. Marsh and D. R. Cormier, *Spline regression models*, no. 137. Sage, 2001.
- [21] S. N. Wood, *Generalized additive models: an introduction with R*. chapman and hall/CRC, 2017.
- [22] T. Lyche, C. Manni, and H. Speleers, "Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement," in *Splines and PDEs: From Approximation Theory to Numerical Linear Algebra: Cetraro*, Cham: Springer.
- [23] X. Liu, X. Wang, Z. Wu, D. Zhang, and X. Liu, "Extending Ball B-spline by B-spline," *Comput. Aided Geom. Des.*, vol. 82, p. 101926, 2020.
- [24] Y. Wang, Smoothing splines: methods and applications. CRC press, 2011.
- [25] C. Ke and Y. Wang, "Smoothing spline nonlinear nonparametric regression models," *J. Am. Stat. Assoc.*, vol. 99, no. 468, pp. 1166–1175, 2004.
- [26] G. Kauermann, "A note on smoothing parameter selection for penalized spline smoothing," *J. Stat. Plan. Inference*, vol. 127, no. 1–2, pp. 53–69, 2005.
- [27] G. Wahba, *Spline models for observational data*. SIAM, 1990.
- [28] P. Craven and G. Wahba, "Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation," *Numer. Math.*, vol. 31, no. 4, pp. 377–403, 1978.
- [29] A. Wytyczak-Partyka, "Organ surface reconstruction using B-splines and Hu moments," *Acta Polytech. Hung.*, vol. 11, no. 10, 2014.