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ABSTRACT: Network traffic prediction forms the cornerstone of intelligent network management, playing an 

indispensable role in optimizing network resource allocation, ensuring service quality, reducing latency, 
enhancing user satisfaction, and preventing network congestion. To address the limitations of existing 

spatiotemporal prediction models in exploring the physical or logical distance relationships between nodes in 

network topologies, a Spatio-temporal Graph Attention Convolutional Recurrent Neural Network (STGACRN) 

model based on graph attention and adaptive graph convolution is proposed. This model combines the original 

network topology with adaptively generated graphs, and by introducing graph attention and graph convolution 

operations, it can effectively capture the direct interactions between network nodes as well as deeply mine the 

potential correlations among them. Moreover, by adding a residual structure to the GRU memory units, it 

avoids the problems of gradient explosion or vanishing caused by the depth of the model network. The 

experimental results show that the proposed model has significant effects on the accuracy of network traffic 

prediction. 

KEYWORDS -Network traffic prediction, Spatial-temporal correlation, Long-term prediction

I. INTRODUCTION 

In today's digital era, the internet has 

permeated daily life and has become an 

indispensable part[1]. People rely on the internet for 

work, learning, entertainment, and social 

interaction, whether it's cloud-based office work, 

online education, video entertainment, or social 

media interaction, the internet is ubiquitous. 

However, this digital lifestyle has led to an 

explosive growth in network traffic. The constant 

emergence of new applications, services, and 

devices has placed unprecedented pressure on 

network operators and enterprises. Issues such as 

network congestion, service unavailability, and 

increased latency directly affect user experience, 

business continuity, and data security. Against this 

backdrop, the importance of accurately predicting 

network traffic has become increasingly 

significant. 

Researchers both domestically and 

internationally have conducted extensive and in-

depth studies in the field of network traffic 

prediction, which can be primarily categorized into 

two main types: traditional methods and deep 

learning-based methods. In the field of time series 

analysis, traditional statistical methods predict 

future network traffic by establishing data 

segmentation statistical models, primarily including 

Autoregressive (AR)[2], Moving Average (MA), 

Autoregressive Moving Average (ARMA)[3], and 

Autoregressive Integrated Moving Average 

(ARIMA)[4] models. These models predict future 

traffic based on the temporal correlation of 

historical data, each with its unique advantages. For 

instance, the ARIMA model is widely popular for 

its effective prediction capability for non-seasonal 

data. However, in the face of traffic data with 

significant seasonal variations, such as mobile 

network traffic, the Seasonal ARIMA[5] model 

exhibits better adaptability. Subsequently, 

researchers have proposed various traditional 

machine learning methods, such as Multilayer 

Perceptrons (MLP)[6], Support Vector Regression 

(SVR)[7], K-Nearest Neighbors (KNN), and 

Support Vector Machines (SVM)
[8]

, to address the 

issue of network traffic prediction. The operations 

of the above two types of algorithms are similar, 

still lacking the ability to handle the temporal and 
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spatial correlations of traffic data, and their 

capacity to learn nonlinear patterns in data is 

limited. 

The development of deep learning 

technologies in recent years has provided new 

solutions for network traffic prediction. Deep 

learning models such as Convolutional Neural 

Networks (CNN), Recurrent Neural Networks 

(RNN), and their variants, Long Short-Term 

Memory networks (LSTM)[9], and Gated Recurrent 

Units (GRU)[10], have significantly improved the 

accuracy and efficiency of network traffic 

prediction through their powerful nonlinear fitting 

capabilities and the ability to capture long-term 

dependencies. These models can automatically 

extract and learn complex patterns in traffic data, 

providing more powerful and flexible prediction 

tools to meet the demands of modern network 

traffic prediction. Ramakrishnan and Vinaya 

kumar[11, 12] et al. conducted an in-depth analysis of 

the experimental effects of applying RNN and its 

variants, LSTM and GRU, on different real-world 

network traffic datasets. The study found that due 

to the gated mechanisms in the design of LSTM 

and GRU, they perform better than traditional RNN 

models in capturing long-term dependencies in 

time series data. Therefore, LSTM and GRU have 

shown higher prediction accuracy in network 

traffic prediction tasks, making them more suitable 

for dealing with the complexity and variability of 

network traffic data. Network traffic is correlated 

not only in time but also in space. Specifically, 

network traffic is influenced not only by the traffic 

in the previous time period but also by the traffic 

on other links or through other nodes. To model the 

spatial correlation of network traffic data, the 

topological structure of network traffic is 

considered as a graph, and many graph neural 

network-based network traffic prediction methods 

have been proposed. However, these previous 

works have not considered two common scenarios 

in modeling the spatial and temporal relationships 

in network traffic prediction: non-correlated 

adjacency and non-adjacency correlation. 

(1) Non-correlated Adjacency 

The situation of non-correlated adjacency 

can be indicated by Figures 1 and 2, where 

although some node pairs are directly adjacent 

according to the adjacency matrix, this does not 

imply similarity in their network traffic patterns. 

By analyzing the traffic time series and calculating 

the correlation for specific adjacent node pairs 

(such as nodes 8 and 9), it is found that the traffic 

correlation coefficient of these node pairs is below 

a predetermined threshold, indicating that their 

traffic patterns are not significantly correlated. This 

finding challenges the traditional notion that 

physical or topological proximity must be linked to 

similarity in traffic patterns, suggesting that more 

factors need to be considered in network traffic 

prediction, such as routing policies, traffic 

management measures, and the roles and functions 

of nodes. Therefore, methods that directly 

determine spatial correlation between nodes based 

on the distance between them cannot accurately 

describe the correlation between network nodes. 

(2) Non-adjacency Correlation 

The situation of non-adjacency correlation 

further emphasizes the complexity of network 

traffic patterns. By analyzing the adjacency matrix, 

node pairs that are not directly adjacent can be 

identified, and then the traffic time series and 

correlation of these node pairs can be further 

analyzed. For example, nodes 1 and 9 are not 

adjacent in the topology, but their traffic time series 

analysis shows a high degree of correlation, 

indicating that despite not being directly connected 

in the network, there exists similarity in their traffic 

patterns. This scenario highlights the dynamic 

nature of network traffic and the possible complex 

dependencies between non-directly adjacent nodes, 

which may be caused by shared traffic sources, 

similar application requirements, or similar user 

behavior patterns. 

In response to the two common situations 

in network traffic prediction mentioned above, and 

the limitations of existing spatiotemporal prediction 

models in exploring the physical distance 

relationships between nodes in network topologies, 

a network traffic spatiotemporal prediction model 

based on graph attention and adaptive graph 

convolution, STGACRN (Spatio-temporal Graph 

Attention Convolutional Recurrent Neural 

Network), is proposed. We designed a spatial 

feature extraction module to capture the dynamic 

spatial correlation of traffic data, which can 

integrate the original network topology with 

adaptively generated graphs. By introducing graph 

attention and graph convolution operations, it can 

effectively capture the direct interaction between 

network nodes and delve deeply into the potential 

correlations between them. Furthermore, a 
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recurrent neural network structure with residual 

connections was designed to handle nonlinear 

temporal correlations and extract temporal features. 

In this way, STGACRN is capable of modeling 

temporal and spatial dependencies. The main 

contributions of this paper are as follows:  

1) We propose a new network 

traffic spatiotemporal prediction model that can 

effectively capture complex nonlinear 

spatiotemporal dependencies. Moreover, to avoid 

the gradient vanishing or exploding problems due 

to the depth of the model network, residual 

connections were added to the GRU memory units, 

leading to the proposal of Res-GRU (Residual-

connected GRU). 

2) The dynamic correlation between 

network nodes is captured through the combination 

of graph attention and graph convolutional neural 

networks. 

3) We conducted extensive 

experiments on three real-world network traffic 

datasets. The experiments demonstrate that our 

proposed method achieves higher prediction 

accuracy. 

 

Fig. 1  The adjacency relationship between some network nodes 
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Fig. 2  Two common situations in network traffic prediction 

 

II. METHODOLOGYI 

2.1 Temporal feature extraction module 

In the field of network traffic prediction, 

identifying the temporal dependencies of network 

dynamics is a core challenge. Recurrent neural 

networks, such as Long Short-Term Memory 

networks (LSTM) and Gated Recurrent Units 

(GRU), are widely used in time series prediction 

tasks and have been proven effective in addressing 

such issues. GRU is favored for its relatively 

simplified structure, fewer parameters, and ease of 

computation and implementation. Related research 

indicates that with an equal number of parameters, 

GRU can match LSTM in prediction performance 

and has a shorter training cycle[13, 14]. Therefore, 

GRU is employed here to extract the temporal 

characteristics of network traffic. Moreover, 

considering the potential issue of vanishing 

gradients in deep GRU networks, a residual 

structure[15] is introduced to overcome performance 

degradation issues that may arise from increased 

network depth. 

 
Fig. 3  Res-GRU unit structure 

Specifically, a residual connection block is 

added between each GRU layer, and the structure 

of the GRU based on residual connections (Res-

GRU) is shown in Figure 3, where the update 

process is shown in Equations (1) to (6). 
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𝑟𝑡 = 𝜎  𝑥𝑡 ,𝑡−1
′  𝑊𝑟 + 𝑏𝑟 #(1)  

𝑧𝑡 = 𝜎  𝑥𝑡 ,𝑡−1
′  𝑊𝑧 + 𝑏𝑧 # 2  

𝑐𝑡 = 𝑡𝑎𝑛 𝑥𝑡𝑊𝑐 + 𝑟𝑡 ∗  𝑡−1
′ 𝑊𝑐 +𝑏𝑐 # 3  

𝑡 = 𝑧𝑡 ∗ 𝑡−1
′ +  1 − 𝑧𝑡 ∗ 𝑐𝑡# 4  

𝑥𝑡
′ = 𝑅𝑒𝐿𝑈 𝑥𝑡𝑊𝑥 + 𝑏𝑥 # 5  

𝑡
′ = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈  𝑡 ||𝑥𝑡

′  𝑊 + 𝑏 # 6  

Here, * denotes the Hadamard product 

(element-wise multiplication operation). If two 

matrices are multiplied without any special 

symbols indicated, standard matrix multiplication 

rules are followed. [∙] represents the concatenation 

operation for vectors or matrices. σ is the sigmoid 

nonlinear activation function. 𝑥𝑡  represents the 

traffic feature at time t. 𝑡
′  denotes the output state 

at time t. 𝑟𝑡  and 𝑧𝑡  refer to the reset gate and update 

gate, respectively. The update gate 𝑧𝑡  is responsible 

for selectively forgetting some information from 

the previous moment 𝑡−1
′  and integrating some 

information from the current 𝑐𝑡 . The reset gate 𝑟𝑡  is 

used to determine the relevance of past information 

𝑡−1
′  to future traffic prediction. 𝑊𝑟 , 𝑊𝑧 , 𝑊𝑐 , 𝑊𝑥 , 

𝑊 , and 𝑏𝑟 , 𝑏𝑧 , 𝑏𝑐 , 𝑏𝑥 , 𝑏  represent the learnable 

weights and bias terms during the training process, 

respectively. 

2.2 Spatial feature extraction module 

The Graph Attention Network (GAT) 

dynamically computes the weights between 

adjacent nodes using the attention mechanism, 

effectively aggregating the features of adjacent 

nodes to the central node. This method, by 

operating on each vertex and traversing all the 

vertices in the graph for computation, overcomes 

the limitations of relying on the Laplacian matrix, 

focusing more on the interactions between nodes 

rather than the global structure of the graph. 

Therefore, utilizing the graph attention mechanism 

to extract spatial features of network traffic data 

can effectively address the issue of non-correlated 

adjacency between nodes. 

The implementation of GAT relies on two 

main steps: computing attention coefficients and 

aggregating node features. In the process of 

updating the feature vector of node 𝑖, attention 

scores of all adjacent nodes are first calculated, and 

then these scores are weighted and summed with 

the features of each adjacent node to obtain the 

updated feature of node 𝑖. The initial feature set of 

nodes is defined as X, expressed as 

X={𝑥 1,𝑥 2,…,𝑥 𝑁}, where 𝑥 𝑖 ∈ 𝑅
𝐹 , N represents the 

total number of nodes, and F represents the number 

of features per node. In the Graph Attention 

Network, the mutual importance between nodes is 

quantified by calculating the attention coefficient 

𝑒𝑖𝑗 , where 𝑒𝑖𝑗  is obtained by the dot product of 

linearly transformed vectors processed by the 

LeakyReLU activation function, as shown in 

equation (7). 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 𝑎 
𝑇 𝑊𝑥 𝑖 ∥ 𝑊𝑥 𝑗   # 7  

Here, 𝑥 𝑖  and 𝑥 𝑗  respectively represent the 

feature vectors of nodes i and j. 𝑊 ∈ 𝑅𝐹×𝐹
′
 is the 

node feature transformation matrix, used for feature 

extraction. 𝑒𝑖𝑗  characterizes the importance level of 

node i to node j. The vector 𝑎  represents the weight 

parameters. LeakyReLU(∙) is a nonlinear activation 

function.  

To optimize the weight distribution of 

each node to its neighboring nodes, the softmax 

function is used to normalize the computed 

attention coefficients, ensuring that the sum of 

attention weights for all neighboring nodes equals 

1. The calculation formula for the normalized 

attention coefficient 𝛼𝑖𝑗  is shown in equation 

(8).The updated representation of node features is 

shown in equation( 9 ). 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒𝑖𝑗  =
exp 𝑒𝑖𝑗  

 exp 𝑒𝑖𝑘  𝑘∈𝑁𝑖

# 8  

𝑖
′ = 𝜎   

𝑗∈𝑁𝑖

𝛼𝑖𝑗𝑊 ⋅ 𝑗 # 9  

Here, 𝛼𝑖𝑗  represents the normalized 

attention coefficient of node i towards node j. 𝑁𝑖 

denotes the set of neighboring nodes of node i. W 

represents the weight matrix. By this method, 

information from neighboring nodes is aggregated 

to obtain a set of updated features 𝑋 ′ = {𝑥 1
′ ,𝑥 2

′ ,…, 

𝑥 𝑁
′ }. 

In the field of network traffic prediction, 

extracting spatial features is key to understanding 

and predicting network behavior. Although Graph 

Attention Networks (GAT), with their attention 

mechanisms, have significant advantages in 

capturing spatial correlations between nodes and 

can dynamically learn the weight distribution 

among adjacent nodes, addressing the issue of non-

correlated adjacency between nodes. However, 

relying solely on GAT does not fully exploit the 
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implicit links in the network, that is, the non-

adjacency correlations between nodes.This 

limitation stems from the inherent complexity of 

the network traffic prediction problem, which 

includes not only the network's topology, i.e., the 

explicit connections between nodes, but also the 

implicit dependencies between nodes formed 

during the traffic transmission process, which may 

not be directly reflected in the network's topology. 

Although the standalone application of 

GAT can capture spatial correlations based on 

direct interactions between nodes, given the 

characteristics of network traffic, which include 

clear starting and ending nodes and their 

transmission paths, it is difficult to fully understand 

the implicit, indirect dependencies between nodes 

through the topology of the graph and direct 

connections alone.Therefore, it is crucial to 

consider the implicit connections caused by 

network flow, in addition to the edges of the graph, 

for accurate prediction of network traffic. 

To overcome this limitation and enhance 

the model's performance in spatial feature 

extraction, combining Graph Convolutional 

Networks (GCN) with adaptive graph generation 

methods is particularly crucial.GCN can identify 

local patterns of node features in the topology of 

the graph through its graph convolution operation, 

while the adaptive graph generation strategy allows 

the model to learn and recognize the potential 

dependencies between nodes, transcending the 

limits of the original graph's topology.The adaptive 

adjacency matrix 𝐴𝑎𝑑𝑝  corresponding to this 

method is shown in equation (10). 

𝐴𝑎𝑑𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑅𝑒𝐿𝑈 𝐸𝑆𝐸𝐷
𝑇  # 10  

Here, 𝐸𝑆 and 𝐸𝐷 represent the embeddings 

of the source and target nodes, respectively, with 

𝐸𝑆 ,𝐸𝐷 ∈ 𝑅
𝑁×𝑑 . The ReLU function is used to 

remove weak connections after the multiplication 

of 𝐸𝑆and 𝐸𝐷, and the softmax function is applied to 

normalize the adaptive adjacency matrix. 

Based on the GAT and GCN models, the 

original network topology structure is combined 

with the method of adaptive graph generation to 

form a new spatial feature extraction module—A-

GCN. The definition of A-GCN is illustrated in 

equations (11) - (14). 

𝑋𝑔𝑎𝑡 = 𝑔  𝐴𝑎𝑑𝑗 ,𝑋 # 11  

𝑋𝑔𝑐𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑅𝑒𝐿𝑈 𝐸𝑆𝐸𝐷
𝑇  𝑋𝑊 + 𝑏# 12  

𝑅𝑔 = 𝜎 𝑋𝑔𝑎𝑡𝑊𝑟1 + 𝑋𝑔𝑐𝑛𝑊𝑟2 + 𝑏 # 13  

𝑆 = 𝑅𝑔 ∗ 𝑋𝑔𝑎𝑡 +  1 −𝑅𝑔 ∗ 𝑋𝑔𝑐𝑛 # 14  

Herein, 𝑔  ∙  represents the graph attention 

computation process. 𝑋𝑔𝑎𝑡  denotes the direct spatial 

features obtained through the aggregation of GAT 

and network topology, while 𝑋𝑔𝑐𝑛  signifies the 

indirect spatial features aggregated through GCN 

and the adaptive generation matrix. 𝑆 represents the 

final comprehensive spatial features obtained 

through A-GCN. 𝑅𝑔  is a gating mechanism, the 

utilization of which can adaptively allocate weights 

to direct and indirect spatial features. This enables 

the spatial feature extraction module to not only 

dynamically capture the importance of explicit 

dependencies between nodes using GAT but also 

process the implicit dependencies between nodes 

through GCN, achieving comprehensive extraction 

of spatial correlations in network traffic. 

2.3 

To leverage the spatiotemporal correlation 

of traffic data using Res-GRU and A-GCN, the 

Spatiotemporal Graph Attention Convolutional 

Recurrent Neural Network (STGACRN) with node 

information enhancement is proposed. The 

structure of STGACRN is shown in Figure 4. The 

computation process of STGACRN is 

demonstrated by equations (15) - (24). 𝑔  ∙  

represents the computation process of graph 

attention, with the output 𝑠𝑡  being the network 

traffic sequence with spatial features obtained from 

A-GCN. 

𝑋𝑔𝑎𝑡 = 𝑔  𝐴𝑎𝑑𝑗 ,𝑥𝑡 # 15  

𝑋𝑔𝑐𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑅𝑒𝐿𝑈 𝐸𝑆𝐸𝐷
𝑇  𝑥𝑡𝑊𝑔𝑐𝑛 + 𝑏𝑔𝑐𝑛 # 16  

𝑅𝑔 = 𝜎 𝑋𝑔𝑎𝑡𝑊𝑟1 + 𝑋𝑔𝑐𝑛𝑊𝑟2 + 𝑏𝑟 # 17  

𝑠𝑡 = 𝑅𝑔 ∗ 𝑋𝑔𝑎𝑡 +  1−𝑅𝑔 ∗ 𝑋𝑔𝑐𝑛 # 18  

𝑟𝑡 = 𝜎  𝑠𝑡 ,𝑡−1
′  𝑊𝑟 + 𝑏𝑟 # 19  

𝑧𝑡 = 𝜎  𝑠𝑡 ,𝑡−1
′  𝑊𝑧 + 𝑏𝑧 # 20  

𝑐𝑡 = 𝑡𝑎𝑛 𝑠𝑡𝑊𝑐 + 𝑟𝑡 ∗  𝑡−1
′ 𝑊𝑐 +𝑏𝑐 # 21  

𝑡 = 𝑧𝑡 ∗ 𝑡−1
′ +  1 − 𝑧𝑡 ∗ 𝑐𝑡# 22  

𝑥𝑡
′ = 𝑅𝑒𝐿𝑈 𝑥𝑡𝑊𝑥 + 𝑏𝑥 # 23  

𝑡
′ = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈  𝑡 ,𝑥𝑡

′  𝑊 + 𝑏 # 24  
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Fig. 4   Structure of STGACRN 

To achieve multi-step traffic prediction in 

one step, multiple layers of STGACRN are stacked 

as an encoder to capture high-level feature 

representations of nodes, outputting these as 

𝑡
′∈𝑅𝑁×𝑁×𝑑 . Subsequently, a one-step convolution 

generator can directly obtain traffic predictions for 

the next τ steps for all nodes by applying a linear 

transformation to project the representation from 

𝑅𝑁×𝑁×𝑑  to 𝑅𝜏×𝑁×𝑁 . The one-step convolution 

generator achieves the capability to directly predict 

multiple future time steps from the current network 

state, avoiding potential error accumulation in 

traditional cyclic prediction strategies and 

significantly improving prediction efficiency. This 

not only optimizes the prediction process but also 

enhances the model's usability and accuracy in 

practical applications. 

In summary, the STGACRN model can 

effectively address the spatiotemporal correlation 

modeling problem in network traffic prediction. 

Initially, the A-GCN module leverages the original 

network topology and adaptive adjacency matrix 

generation, along with the properties of graph 

attention networks and graph convolutional neural 

networks, to effectively capture dynamic spatial 

correlations between network nodes. Then, the 

Res-GRU module is utilized to capture the 

temporal correlation of network traffic. Finally, to 

avoid error accumulation, the One Step 

Convolution Generator is used to achieve multi-

step prediction outputs. 

 

III. EXPERIMENTS 

3.1 Datasets 

The experiment utilized three publicly 

available network traffic datasets: Abilene, 

CERNET, and GEANT. 

The Abilene dataset originates from the 

Abilene backbone network of the United States 

Research and Education Network, a wide-area 

network with a real topology that connects 12 

major U.S. cities as network nodes through 30 

undirected links, reflecting the network traffic 

transmission paths between these cities.This dataset 

covers traffic data from March 1 to September 10, 

2004, collecting the network's traffic bandwidth 

values every 5 minutes, resulting in 48,096 traffic 

matrices.Each traffic matrix detailedly records the 

traffic conditions from 12 source nodes to 12 

destination nodes, forming 144 OD (Origin-

Destination) flow pairs. 

The CERNET dataset comes from the 

China Education and Research Computer Network, 
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which is the largest national academic network in 

China, covering colleges, universities, and research 

institutions across the country.As of 2013, this 

network traffic dataset consists of 12 nodes and 32 

undirected links. The CERNET dataset's traffic 

data collection period was from 22:10 on February 

19, 2013, to 15:20 on March 26, 2013, with traffic 

data collected every 5 minutes, resulting in 9,999 

traffic matrices. 

The GEANT dataset is derived from the 

GEANT network, a large research and education 

network covering Europe, available for use by 

research institutions and universities. The GEANT 

network possesses a complex, real network 

topology. As of 2005, the network included 23 

nodes and 74 undirected links, reflecting the 

network connections and traffic exchange between 

major European research centers. The GEANT 

dataset's traffic data collection period was from 

15:30 on May 4, 2005, to 07:45 on August 31, 

2005, with traffic data collected every 15 minutes, 

resulting in 10,769 traffic matrices. 

In experimental research, the dataset is 

divided using a 6:2:2 ratio, meaning that based on 

the timeline of data collection, the first 60% of the 

dataset is allocated as the training set, the last 20% 

as the test set, and the remaining portion serves as 

the validation set. During the model training 

process, data from the past 12 time steps are used 

as input to predict data for the next 12 time steps. 

The initial learning rate is set to 0.003 in the 

experiment, the batch size is set to 64, and the 

ADAM optimizer is selected to optimize the 

training process. 

 

3.2 Evaluation Metrics 

The prediction results are evaluated using 

the commonly used Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE). The 

smaller the values of RMSE and MAE, the closer 

the prediction results are to the actual values, 

indicating better prediction performance. The 

corresponding calculation formulas for these 

evaluation metrics are shown in equations (25) and 

(26). 

𝑅𝑀𝑆𝐸 =  
1

𝑛
   𝑦 𝑖 − 𝑦𝑖 

2  
𝑛

𝑖

# 25  

𝑀𝐴𝐸 =
1

𝑛
  𝑦 𝑖 − 𝑦𝑖 

𝑛

𝑖

# 26  

Here, n denotes the total number of 

samples, 𝑦 𝑖  represents the predicted value, and 𝑦𝑖 

represents the actual value. 

 

3.3 Baseline Methods  

The comparative models selected include 

classic time series prediction models LSTM, GRU, 

TCN, and the spatiotemporal prediction model 

AGCRN.A brief description of the four 

comparative models follows: 

（1）LSTM: LSTM effectively addresses 

the long-term dependency issues in long sequence 

data through a special gating mechanism (input 

gate, forget gate, and output gate). It can remember 

and forget information when dealing with complex 

sequence data, thus performing excellently in 

various time series prediction tasks. 

（2）GRU: GRU is a simplified version 

of LSTM, combining the forget gate and input gate 

into a single update gate and introducing a reset 

gate to control the flow of information, thereby 

reducing the number of model parameters and 

improving training efficiency. Despite its 

simplified structure, GRU can compete with LSTM 

in many tasks, especially when the dataset is small 

or computational resources are limited. 

（3）TCN: TCN processes time series 

data through one-dimensional convolutional layers 

and residual connections, especially employing 

causal convolutions (ensuring only data up to the 

current moment is used for predictions) and dilated 

convolutions (expanding the receptive field to 

capture long-term dependencies), allowing TCN to 

handle long sequence data while avoiding the 

gradient vanishing or explosion issues of traditional 

RNN models. With the advantage of parallel 

computation, TCN shows good performance in 

handling large-scale time series data, especially 

when capturing long-distance dependencies is 

required. 

（4）AGCRN[16]: AGCRN automatically 

captures the spatial and temporal correlations of 

traffic data by introducing Node Adaptive 

Parameter Learning (NAPL) and Data Adaptive 

Graph Generation (DAGG) modules, without 

relying on predefined spatial connection graphs 

(the original network topology). 
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3.4 Experimental Results 

Table 1 presents the prediction results of 

STGACRN and baseline models on the Abilene, 

CERNET, and GEANT datasets at different time 

steps and on average.From Table 1, it can be 

observed that STGACRN achieves better 

prediction performance on all three network traffic 

datasets. 

 

Tab. 1  Traffic prediction results based on different models of Abilene, CERNET and GEANT datasets. 

Dataset Model 
3rd 6th 12th Average 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Abilene 

GRU 7.10 13.55 7.12 13.57 7.23 13.72 7.15 13.62 

LSTM 7.27 13.93 7.31 14.02 7.33 14.05 7.31 14.01 

TCN 7.00 13.80 6.99 13.81 6.99 13.81 7.00 13.81 

AGCRN 4.31 9.61 4.77 10.40 5.24 11.19 4.73 10.31 

STGACRN 3.63 8.51 4.16 9.43 4.77 10.39 4.09 9.32 

CERNET 

GRU 25.22 97.49 25.74 100.70 26.31 103.49 25.70 100.28 

LSTM 24.18 93.33 24.55 96.57 24.70 97.87 24.50 95.90 

TCN 23.11 86.88 23.50 90.16 23.59 90.91 23.33 88.93 

AGCRN 14.94 51.35 17.15 60.19 20.96 82.15 17.24 63.82 

STGACRN 11.56 35.79 15.08 50.39 19.52 76.11 14.67 54.04 

GEANT 

GRU 10.91 28.99 11.25 29.01 11.58 29.22 11.21 29.05 

LSTM 10.95 29.56 11.39 30.03 11.60 30.26 11.26 29.92 

TCN 8.90 29.35 8.98 29.77 8.98 29.95 8.94 29.60 

AGCRN 6.65 18.51 6.68 19.15 7.36 20.47 6.90 19.27 

STGACRN 1.89 7.51 2.35 9.14 3.25 11.36 2.56 9.23 
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Fig. 5  Comparison of MAE and RMSE indexes of different models in three network traffic datasets 

 

Figure 5 visualizes the comparative 

experimental results of the model and the baseline 

model on three network traffic datasets. It can be 

seen from Table 1 and Figure 5 that in the 

prediction of STGACRN on three different datasets 

(Abilene, CERNET and GEANT ) the STGACRN 

model shows better performance than other models 

in 3rd time step, 6th time step and 12th time step 

prediction and overall average performance. 

Especially in the predicted 12th time step, the MAE 

and RMSE indicators of the STGACRN model 

perform particularly well. 

For the Abilene dataset: The average 

MAE and RMSE of the STGACRN model were 

4.09 and 9.32, respectively, significantly better 

than GRU, LSTM, and TCN, demonstrating its 

effectiveness in capturing and predicting the 

temporal and spatial characteristics of network 

traffic.For the CERNET dataset: In a relatively 

larger and more complex network, the average 

MAE and RMSE of the STGACRN model were 

14.67 and 54.04, respectively, surpassing 

traditional RNN models and the latest 

spatiotemporal graph models, proving STGACRN's 

strong capability in handling large-scale network 

traffic data.For the GEANT dataset: STGACRN 

outperformed the comparison models in MAE and 

RMSE metrics at all time steps, especially at the 

12th time step, indicating its excellent long-term 

prediction ability. 

The results above indicate that the 

STGACRN model effectively integrates temporal 

and spatial information, innovatively employing 

two types of graph neural network techniques to 

process graph-structured data, thereby enhancing 

spatiotemporal prediction of network traffic. In 

contrast, while LSTM and GRU have their 

advantages in handling time series problems, they 

lack the capability to process graph-structured data. 

TCN provides a wider receptive field through 

dilated convolution, but its ability to capture 

complex network topologies remains limited. 

Although the AGCRN model introduces an 

adaptive graph structure, it performs less 

effectively than STGACRN in experiments, due to 

STGACRN's more effective temporal feature 

capture and spatiotemporal feature fusion 

mechanism. 

 

3.5Ablation Studies 

To verify the effectiveness of different 

modules in the proposed model, an ablation study 

was conducted by removing key modules of the 

model. For this purpose, three variants of the model 

were designed: notRes, notGCN, and notGAT. 

NotRes removed the residual connections in the 

model and utilized standard GRU units. notGCN 

removed the GCN and the adaptive adjacency 

matrix, retaining only the GAT to process the 

original adjacency matrix. notGAT removed the 

graph attention network and the original adjacency 

matrix, keeping only the GCN to process the 

adaptive adjacency matrix. The results of the 

ablation study are shown in Table 2. 

Tab. 2  Ablation experimental results 

 

Dataset Model 
3rd 6th 12th Average 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Abilene notRes 4.60 9.33 4.91 10.03 5.36 10.89 4.91 9.99 
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notGCN 3.85 8.59 4.33 9.47 4.87 10.46 4.30 9.40 

notGAT 3.75 8.64 4.30 9.53 4.80 10.49 4.23 9.46 

STGACRN 3.63 8.51 4.16 9.43 4.77 10.39 4.09 9.32 

CERNET 

notRes 13.00 42.14 16.13 56.70 20.83 82.77 16.08 60.32 

notGCN 12.15 39.56 16.18 57.02 22.01 87.66 15.92 61.53 

notGAT 12.10 38.70 16.80 57.50 23.26 88.58 16.44 61.91 

STGACRN 11.56 35.79 15.08 50.39 19.52 76.11 14.67 54.04 

GEANT 

notRes 2.73 7.94 3.17 9.55 3.50 11.78 3.01 9.62 

notGCN 3.15 7.95 3.47 9.58 3.87 11.80 3.23 9.61 

notGAT 2.55 8.09 3.75 9.71 4.30 12.10 3.16 9.85 

STGACRN 1.89 7.51 2.35 9.14 3.25 11.36 2.56 9.23 

 
Fig. 6  Comparison of MSE and RMSE indexes of STGACRN model and its variants in three network traffic 

datasets 

 

Figure 6 visualizes the ablation 

experimental results of the model and its variants 

on three network traffic datasets. According to 

Table 2 and Figure 6, the complete model 

STGACRN shows better prediction performance 

than the variant model in all data sets, whether in 

the future time steps of 3rd, 6th, 12th, or average 

results. Specifically, the STGACRN model has an 

average MAE of 4.09 on the Abilene dataset, while 

the MAE of the notRes model, which lacks residual 

connections, is 4.91, showing a significant 

performance decline. Similarly, on the CERNET 
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dataset, the average MAE of STGACRN is 14.67, 

while the MAE of notRes increases to 16.08.This 

indicates that residual connections play a crucial 

role in the model, especially in capturing long-term 

dependencies and preventing gradient vanishing 

during training. 

For the notGCN variant, the decrease in 

predictive performance across datasets also 

highlights the role of GCN based on adaptive 

adjacency matrices in capturing potential 

correlations between nodes. For example, on the 

GEANT dataset, the average MAE of notGCN is 

3.23, compared to 2.56 for STGACRN, indicating a 

performance decrease. 

The performance decline of the notGAT 

model across all datasets confirms the importance 

of the attention mechanism in highlighting key 

relationships between nodes. Particularly on the 

Abilene dataset, the average MAE of not GAT is 

4.23, slightly higher than STGACRN's 4.09, 

indicating that the graph attention mechanism can 

effectively help the model aggregate features of 

key adjacent nodes, thereby improving prediction 

accuracy. 

Overall, the ablation study results verified 

the predictive accuracy of the complete model 

across multiple time steps, while also highlighting 

the significant contributions of residual connections, 

GAT, and GCN based on adaptive adjacency 

matrices to enhancing network traffic prediction 

accuracy. The synergistic action of these 

components enables the STGACRN model to 

effectively address the issues of non-correlated 

adjacency and non-adjacency correlation, thereby 

achieving superior predictive performance. It also 

proves its effectiveness in spatiotemporal 

prediction of network traffic. 

 

IV. CONCLUSION 

To enhance the accuracy of network 

traffic prediction, a Spatio-temporal Graph 

Attention Convolutional Recurrent Neural Network 

(STGACRN) based on graph attention and adaptive 

graph convolution has been proposed. To 

dynamically capture spatial correlations between 

nodes, this model addresses the challenges of non-

adjacency correlation and non-correlated adjacency 

by integrating Graph Attention Networks (GAT) 

with Graph Convolutional Networks (GCN) based 

on adaptive graphs. Simultaneously, to avoid issues 

such as gradient vanishing or exploding during 

cyclic prediction, a Gated Recurrent Unit (GRU) 

based on residual connections has been designed to 

capture the temporal correlations in traffic data. 

The model was evaluated on three real-world 

network traffic datasets and compared with GRU, 

LSTM, TCN, and AGCRN models. The 

experimental results show that the model exhibits 

superior predictive performance at various 

forecasting levels, demonstrating its effectiveness 

in network traffic prediction. 
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