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I. Introduction 

 Functional Analysis is an area of 

Mathematics that has grown over the past few 

decades, influenced by problems existing in 

Physics, Mechanics, Operation Research and 

Economics. It can be categorized into two parts -

Linear and Nonlinear. Most problems of the 

physical world are nonlinear and these problems 

are modeled in the form of mathematical equations. 

Mathematical models for a large number of 

problems in science lead to equations 𝐹𝑥 = 𝑦 in 

infinite dimensional spaces[15]. In particular, all 

kinds of differential equations, integral equations, 

integrodifferential equations, etc. can be formulated 

this way on usually infinite dimensional spaces of 

functions. The next task is to find the solutions, 

concerned about the uniqueness of the solution and 

also the distribution of such solutions in the domain 

of F.  

 The Operator plays a key role in these 

mathematical models. "Accretive Operator" is one 

such operator introduced independently by 

Browder [5] and Kato [19]. Of course, the reason 

was its capacity in dealing with certain nonlinear 

models.  

 

II.  Generalization of Monotone Operator 

to Accretive Operator 

 

2.1  Monotone Operator in Hilbert Space 

The concept of the monotone operator was 

first introduced by Minty [24] in 1962, Minty 

defined the monotone operators as:  

Definition 2.1 [24]A mapping 𝐹:𝐷 ⊆ 𝐻 → 𝐻 

which satisfies 

        (𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦) ≥ 0      ∀𝑥, 𝑦 ∈ 𝐷,  (1) 

 where H is a Hilbert space with inner product (. , .) 

is called monotone.  

Examples of monotone mapping [15] are:  

Example 2.1 Let 𝐹: 𝑅 → 𝑅 be a monotone 

increasing function. Then F is a monotone operator. 

 

Example 2.2In the case when 𝐻 = 𝑅 𝑛  and 

𝐹(𝑥) = 𝐴𝑥 is linear, then condition (1) just means 

(𝐴𝑥, 𝑥) ≥ 0 on 𝑅 𝑛  i.e., monotonicity is the same as 

positive semidefiniteness of the matrix A.  

 

2.2  Monotone Operator in Banach Space 

 Among all infinite-dimensional Banach 

spaces, Hilbert spaces have the nicest geometric 

properties. The following two identities  

||𝑥 + 𝑦||2 = ||𝑥||2 + 2 < 𝑥, 𝑦 > +||𝑦||2, 

||𝜆𝑥 + (1 − 𝜆 )𝑦||2

= 𝜆||𝑥||2 − 𝜆 (1 − 𝜆 )||𝑥 − 𝑦||2

+ (1 − 𝜆 )||𝑦||2 

,  

which hold for all 𝑥, 𝑦 ∈  𝐻, are some of the 

geometric properties that characterize innerproduct 

spaces and also make certain problems posed in 

Hilbert spaces more manageable than those in 

general Banach spaces. 

 M. Hazewinkel observed, that "Many and 
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probably most, mathematical objects and models 

do not naturally live in Hilbert spaces"[12]. There 

are many interesting initial value problems in the 

theory of partial differential equations whose 

natural setting is not a Hilbert space, but rather a 

Banach space. Consequently, to extend some of the 

Hilbert space techniques to more general Banach 

spaces, analogues of the above identities were 

developed using the duality map which has become 

one of the most important tools in nonlinear 

functional analysis. The developments include the 

work of Bynum[11], Reich[28], Xu[30], Xu and 

Roach[31] and many others. 

The concept of monotonicity can be 

generalized from Hilbert spaces to more general 

Banach spaces. Let E be a real Banach space and 

𝐸∗ its dual space, then 𝐹: 𝐸 → 𝐸∗ is said to be 

monotone if  

(𝐹𝑥1 − 𝐹𝑥2 , 𝑥1 − 𝑥2) ≥ 0, for all 𝑥1 , 𝑥2 ∈ 𝐷(𝐹),  

 where (𝑥, 𝑥 ∗) denotes the value of 

𝑥∗ ∈ 𝐸∗ at 𝑥 ∈ 𝐸. When 𝐸 = 𝐻 is Hilbert space, 

then 𝐸∗ = 𝐸 and (𝑥, 𝑥∗) denotes the inner product 

in H.  

2.3  Duality mapping 

 Let E be a real Banach space, 𝐸∗ its dual 

space with the duality pairing between 𝑤 in 𝐸∗ and 

𝑥 in E, denoted by (𝑥, 𝑤). Beurling and Livingston 

[1] introduced the concept of duality mapping 

𝐽: 𝐸 → 2𝐸
∗
 as  

𝐽(𝑥) = {𝑤:𝑤 ∈ 𝐸∗, ||𝑤|| = ||𝑥||; (𝑥,𝑤) =

||𝑥||||𝑤||},  

for each 𝑥 in E.  

 For any Banach space E and any element 

𝑥 of E, 𝐽(𝑥) is a nonempty closed convex subset of 

the sphere of radius ||𝑥|| about zero in 𝐸∗. If 𝐸∗ is 

strictly convex, J is a single-valued mapping of E 

into 𝐸∗ and is continuous from the strong topology 

of E to the 𝑤𝑒𝑎𝑘∗ topology of 𝐸∗. 

The single valued duality mapping [5] is 

defined as 𝐽: 𝐸 → 𝐸∗ such that for each 𝑥 in E, 

(𝐽𝑥, 𝑥) = ||𝑥||. ||𝐽𝑥|| and ||𝑥|| = ||𝐽𝑥||.  

 In the monotonicity problems, the duality 

mapping takes the place of the identity in Hilbert 

spaces and so the duality pair is replaced by the 

respective inner product. Moreover, it is the key 

technique in the study of evolution equations 

related to monotone and accretive operators. 

 

2.4  J-Monotone operator 

Browder and Figueiredo [9] introduced the concept 

of J-monotonicity using the concept of duality 

mapping. 

A mapping 𝐹:𝐷(𝐹) ⊆ 𝐸 → 𝐸 is said to be J-

monotone if  

(𝐹𝑥1 − 𝐹𝑥2 , 𝐽(𝑥1 − 𝑥2)) ≥ 0 , for all 𝑥1 , 𝑥2 ∈

𝐷(𝐹),  

 where 𝐽: 𝐸 → 𝐸∗ is a given duality mapping. This 

class of operators has also been studied by Browder 

[3, 4].  

 When the duality mapping J is multi-

valued, then the definition of J-monotone operators 

coincides with an important class of operators 

known as "Accretive operators". 

 

2.5  Accretive Operator 

The concept of the Accretive operator is given by 

F. E. Browder [5] and T. Kato [19] in 1967. 

Browder [5] defined the Accretive operators as  

Definition 2.2Let A be a nonlinear mapping with 

domain D(A) and range R(A) in real Banach space 

E, then A is said to be accretive if for each pair x 

and y in D(A), 

(𝐴(𝑥) − 𝐴(𝑦), 𝑤) ≥ 0, ∀𝑤 ∈ 𝐽(𝑥 − 𝑦), (2) 

 

where 𝐽: 𝐸 → 2𝐸
∗
 is a given duality mapping.  

An element 𝑥∗ ∈ 𝐸 is said to be zero of 

the accretive operator A, if 𝐴𝑥∗ = 0 and is 

respectively, said to be the solution of the accretive 

operator equation 𝐴𝑥 = 0. 

 When 𝐸∗ is strictly convex (i.e. J is 

single-valued), the nonlinear accretive operators 

from E to E coincide with the J-monotone 

operators. Whereas, if E is a Hilbert space, then J = 

I and the accretive operators reduce to the class of 

monotone operators. 

 Kato [19] defined the accretive operators 

as  

Definition 2.3An operator A with domain D(A) 

and range R(A) in an arbitrary Banach space E is 

said to be accretive if  

||𝑥 − 𝑦 + 𝛼(𝐴𝑥 − 𝐴𝑦)|| ≥ ||𝑥 − 𝑦|| (3) 

 

 for every 𝑥, 𝑦 ∈ 𝐷(𝐴) and 𝛼> 0.  

 

Kato [19] showed that the accretivity thus 

defined can also be expressed in terms of the 

duality mapping J from E to 𝐸∗ (in general, a multi-

valued operator). For this, Kato proved a lemma 

generally known as "Kato’s lemma", which states 

that,  

Lemma 2.1 Kato’s Lemma:- 
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Let 𝑥, 𝑦 ∈ 𝐸. Then ||𝑥|| ≤ ||𝑥 + 𝛼𝑦||, for every 

𝛼> 0 if and only if, there is 𝑗 ∈ 𝐽𝑥 such that 

𝑅𝑒(𝑦, 𝑗) ≥ 0.  

Using this lemma, Kato showed that (3) is 

equivalent to the following definition of accretive 

operator:- 

For each 𝑥, 𝑦 ∈ 𝐷(𝐴), there exist 𝑗 ∈ 𝐽(𝑥 − 𝑦) such 

that  

𝑅𝑒(𝐴𝑥 − 𝐴𝑦, 𝑗) ≥ 0. (4) 

The notion of accretive operators in (2) introduced 

by Browder [5] in a Banach space E, is almost 

identical to that of accretive operators defined in 

(4) by Kato [19]. There is a slight difference that 

Browder requires 𝑅𝑒(𝐴𝑥 − 𝐴𝑦, 𝑗) ≥ 0, for every 

𝑗 ∈ 𝐽(𝑥 − 𝑦), whereas Kato requires it only for 

some 𝑗 ∈ 𝐽(𝑥 − 𝑦).  

 These two definitions coincide if J is 

single-valued. Example of an Accretive Operator 

follows as:-  

Example 2.3[13]Let R=(−∞,∞) with usual norm 

and 𝐴: [0,1] → 𝑅 be defined by 𝐴𝑥 =
𝑥

2
− 1. Then 

for 𝑥, 𝑦 ∈ [0,1] 

(𝐴𝑥 − 𝐴𝑦, 𝑗(𝑥 − 𝑦))  = |𝐴𝑥 − 𝐴𝑦||𝑥 − 𝑦|   

=
1

2
|𝑥 − 𝑦|2 ≥ 0  

 

 Hence, A is accretive.  

 

III. Different classes of Accretive Operators 

 

3.1  Maximal Accretive Operator 

 

Definition 3.1A mapping A is said to be Maximal 

accretive[14] if it is accretive and the inclusion 

𝐴 ⊆ 𝐵, with B accretive, implies 𝐴 = 𝐵. (i.e. A is 

said to be maximal accretive if it is not properly 

contained in another accretive mapping.)  

 

3.2  m-Accretive Operator 

 

Definition 3.2Let A be an accretive operator with 

domain D(A) and range R(A) in E, where E is a 

Banach space with dual E*. Then A is said to be 

m-Accretive[19] if the operator (I+rA) is surjective 

(i.e. R(I+rA)=E) for all 𝑟 > 0, where I is the 

identity operator on E.  

 Browder [6] states that if 𝐴: 𝐸 → 𝐸 is 

locally Lipschitzian and accretive, then A is m-

accretive. In 1970, Martin [23] extended this result 

by proving that if 𝐴: 𝐸 → 𝐸 is continuous and 

accretive, then A is m-accretive. 

An example of a continuous accretive and hence m-

accretive operator [21]:-  

Example 3.1[21] Let 𝐸 = (−∞,∞) with the usual 

norm ||. || and 𝐴: 𝐸 → 𝐸 be defined by  

𝐴𝑥 = {𝑥 − 1;      𝑥 ∈ (−∞,−1) 𝑥 −  −𝑥;      𝑥
∈ [−1,0) 𝑥 +  𝑥;      𝑥
∈ [0,1] 𝑥 + 1;      𝑥 ∈ (1, +∞)  

 Then A is continuous and R(A) is unbounded. 

To prove that A is accretive, consider, in particular, 

the case if 𝑥, 𝑦 ∈ (−∞, −1) and 𝑟 > 0. Then 

||𝑥 − 𝑦 + 𝑟(𝐴𝑥 − 𝐴𝑦)|| = (1 + 𝑟)||𝑥 −

𝑦|| ≥ ||𝑥 − 𝑦||, 

which implies that A is accretive.  

 

Remark In Banach spaces, m-accretiveness always 

implies maximal accretiveness, but the converse is 

not true[15]. In Hilbert spaces, both notions 

coincide. 

 

3.3  Strongly Accretive Operator 

Let E be an arbitrary Banach space with 

dual 𝐸∗. An operator A with domain D(A) and 

range R(A) in E is called Strongly Accretive [27] 

if there exist a constant 𝑘 > 0 such that for all 

𝑥, 𝑦 ∈ 𝐷(𝐴), there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such 

that  

𝑅𝑒(𝐴𝑥 − 𝐴𝑦, 𝑗(𝑥 − 𝑦)) ≥ 𝑘(||𝑥 − 𝑦||)2 (5) 

without loss of generality, we may assume 

𝑘 ∈ (0,1). 

If k=0 in (5), then A is called Accretive 

(Browder[7] and Kato [19]).  

3.4  𝜙-Strongly Accretive Operator 

Let E be an arbitrary Banach space with dual 𝐸∗. 

An operator A with domain D(A) and range R(A) 

in E is called 𝜙-Strongly Accretive [27] if there 

exist a strictly increasing function 𝜙: [0, ∞) →

[0,∞) with 𝜙(0) = 0 such that for all 𝑥, 𝑦 ∈ 𝐷(𝐴), 

there exist 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) satisfying  

𝑅𝑒(𝐴𝑥 − 𝐴𝑦, 𝑗(𝑥 − 𝑦)) ≥ 𝜙(||𝑥 − 𝑦||)||𝑥 − 𝑦|| 
 

Remark:The class of strongly accretive operators 

is a proper subclass of the class of 𝜙 − 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 

accretive operators. i.e. Every strongly accretive 

operator is 𝜙-strongly accretive with 𝜙: [0, ∞) →

[0,∞) defined by 𝜙(s)=ks but the converse doesn’t 

hold [27].  

 

Example 3.2 [27]Let E = R, the reals with the 
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usual norm and let 𝐾 = [0,∞). 

Define 𝐴:𝐾 → 𝐾 by  

𝐴𝑥 = 𝑥 −
𝑥

1 + 𝑥
 

Then A is 𝜙-strongly accretive with 𝜙: [0, ∞) →

[0,∞), defined by 𝜙(𝑠) =
𝑠2

1+𝑠
. 

In particular, if x = 1 and y = 2, then  

(𝐴(1) − 𝐴(2), 𝑗(1 − 2))  
= |𝐴(1) − 𝐴(2)||1 − 2|   

= |
1

2
−

4

3
|| − 1|   =

5

6
,    

  

 

whereas, 

 

𝜙(||1 − 2||)||1 − 2||  = 𝜙(|1 − 2|)|1 − 2|   

= 𝜙(1). (1)   =
1

2
,  

 which implies that A is 𝜙-strongly accretive i.e.  

(𝐴𝑥 − 𝐴𝑦, 𝑗(𝑥 − 𝑦)) ≥ 𝜙(||𝑥 − 𝑦||)||𝑥 − 𝑦||.  

 However, given any 𝑘 ∈ (0,1), if we 

choose 𝑥 ∈ 𝐾 such that 0 < 𝑥 <
𝑘

1−𝑘
 and y=0, then 

to show that A is Strongly Accretive, we must 

have, 

 

< 𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦 > ≥       𝑘|𝑥 − 𝑦|2 , 𝑖. 𝑒.
< 𝐴𝑥 − 0, 𝑥 − 0 > 
≥       𝑘|𝑥 − 0|2 , 𝑜𝑟|𝑥

−
𝑥

1 + 𝑥
||𝑥|  ≥       𝑘|𝑥|2 ,

𝑥

1 + 𝑥
 

≥       𝑘, 𝑖. 𝑒. 𝑥       ≥       
𝑘

1 − 𝑘
,    

 but since 𝑥 ≤
𝑘

1−𝑘
,hence  

< 𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦 >      ≤       𝑘|𝑥 − 𝑦|2 , 

 so that A is not Strongly Accretive.  

 

IV.   Application of Accretive Operators in 

solving various problems 

In the area of nonlinear analysis, the theory of 

Accretive Operators is an important and developing 

field, due to its application in various areas as:-   

● Accretive Operators is firmly connected 

with equations of evolutions found in the 

heat, wave, Schrodinger and similar other 

equations [15, 19].  

● The solution of a non-linear evolution 

equation which gives a novel approach to 

the X-ray tomography problem can be 

obtained with the help of Accretive 

Operators[16].  

● Many problems in Operation Research 

and Mathematical Physics can be written 

as variational inequalities, equilibrium 

problems, or operator inclusions with 

Accretive Operators [29].  

● The result of finding common zeros of a 

finite family of accretive operators is 

useful in solving convex feasibility 

problems. The Convex feasibility problem 

captures applications in various disciplines 

such as sensor networking, radiation 

therapy, treatment planning, computerized 

tomography, and image restoration[26].  

 

V. Relation of accretive operators with 

other mappings and fundamental 

results 

 

5.1  Accretive Operators are closely related to 

various classes of other mappings 

 

Accretive Operator and Non-expansive 

mapping:- 

The relation between non-expansive and accretive 

mappings creates a strong connection between the 

fixed point theory of nonexpansive mappings and 

the operator theory of accretive maps. These 

relations are as follows[7]:  

(a) If U is a nonexpansive mapping then 𝐴 = 𝐼 − 𝑈 

is an accretive mapping 

(b) If {𝑈(𝑡), 𝑡 ≥ 0} is a semigroup of (nonlinear) 

mappings of E into E with infinitesimal generator 

A, then all the mappings U(t) are nonexpansive if 

and only if (−𝐴) is accretive.  

 

Accretive operator and Pseudo-contractive 

mapping:- 

Pseudo-contractive mappings introduced by 

Browder and Petryshyn[10] are defined as: 

If T is a mapping of D(T) in E, into E, then T is 

said to be pseudo-contractive if for each 𝑥1 , 𝑥2 ∈

𝐷(𝑇), there exists 𝑗(𝑥1 − 𝑥2) ∈ 𝐽(𝑥1 − 𝑥2) such 

that  

(𝑇𝑥1 − 𝑇𝑥2 , 𝑗(𝑥1 − 𝑥2)) ≤ ||𝑥 − 𝑦||2  
 The relation between Accretive Operator and 

Pseudo contractive mapping was given by 

Browder[7] in the following proposition:  

Proposition 5.1 [7] Let E be a Banach space, T is a 

mapping with domain and range in E, 𝐴 = 𝐼 − 𝑇. 

Then T is pseudo-contractive if and only if A is 
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accretive.  

 

Accretive operator and Dissipative Operator:-  

In the linear case, A is accretive if and only if (−𝐴) 

is dissipative in the sense of Lumer-Phillips [22].  

 

5.2  Fundamental Results on Accretive 

operators 

 

Browder [5] established several general existence 

theorems for solutions of nonlinear functional 

equations involving nonlinear accretive operators 

which significantly improve earlier results in this 

direction. Further, Browder[6] presented some new 

and sharper results on two related topics:   

1.  The existence theory of solutions for the initial 

value problem for nonlinear equations of evolution 

of the form  
𝑑𝑢

𝑑𝑡
+ 𝐴(𝑡)𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), (𝑡 ≥ 0), (6) 

with the initial condition 𝑢(0) = 𝑥0, where it is 

assumed that for each t in 𝑅+, A(t) is an accretive 

operator such that D(A(t)) is independent of t and 

𝑅(𝐴(𝑡) + 𝐼) = 𝐸, while ƒ is a continuous, bounded 

mapping of 𝑅+ × 𝐸 into E.  

2.  The existence theory of solutions of the 

equation  

 𝐴(𝑢) = 𝑤 (7) 

for an accretive operator A and an element 𝑤 of E.  

In the special case,   

● when E is a Hilbert space and A(t) is 

linear, such results were obtained by 

Browder [2] and Kato [18], 

● extensions for A(t) linear and more 

general Banach spaces E, were given in 

Murakami [25] and Browder [5],  

● results for A(t) nonlinear were first 

obtained by komura [20] in Hilbert space 

and  

● extended to more general Banach spaces 

by Kato [19] for the case in which 𝑓 = 0.  

 The connection between the equation of 

evolution (6) and the nonlinear functionalequation 

(7) is basedupon the relations between the classes 

of nonexpansive and accretive mappings.  

Browder [7] applied the theory of accretive 

operators to obtain a substantial strengthening of 

the fixed point theory of nonexpansive mappings as 

well as of a more general class of pseudo-

contractive mappings.  

 Interest in Accretive mapping stems 

mainly from their firm connection with evolution 

equations. Many physically significant problems 

can be modeled by initial-value problems of the 

form  

𝑢′(𝑡) + 𝐴𝑢(𝑡) = 0, 𝑢(0) = 𝑢0 (8) 

 where A is an accretive operator in an appropriate 

Banach space[32]. Typical examples where such 

evolution equations occur can be found in the heat, 

wave or Schrodinger equations[15, 19]. 

The solutions to the problem:  

𝑓𝑖𝑛𝑑 𝑢 ∈ 𝐸 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝐴𝑢 = 0 (9) 

 are precisely the equilibrium points of the system 

(8).  

 An early fundamental result in the theory 

of accretive operators, due to Browder [8], states 

that the initial value problem (8) has a solution if A 

is locally Lipschitzian and accretive on E. Utilizing 

the existence result for (8), Browder [6] proved that 

if A is locally Lipschitzian and accretive on E, then 

A is m-accretive. Martin [23] extended this result 

and proved that (8) is solvable if A is continuous 

and accretive on E and utilizing this result, he 

further proved that if A is continuous and accretive, 

then A is m-accretive which implies that the 

equation 𝑥 + 𝐴𝑥 = 𝑓 has a solution 𝑥∗ ∈ 𝐷(𝐴), for 

any 𝑓 ∈ 𝐸. This is one of the fundamental results of 

the theory of accretive operators.  

 In the evolution equation (8), if u is 

independent of t, then 
𝑑𝑢

𝑑𝑡
= 0 and the equation (8) 

reduces to (9) whose solution describes the 

equilibrium state or the stable state of the system 

described by (8). This is very important in many 

applications such as ecology, economics, and 

physics [32]. If A is accretive and 𝑇 = 𝐼 − 𝐴 is 

pseudocontractive then 𝑥∗ is a solution of (9) if and 

only if 𝑥∗ is a fixed point of T [7].  

Browder [7] proved the following existence 

theorem for nonlinear accretive operators in 

Banach space.  

Theorem 5.1Let E be a Banach space, A a 

Lipschitzian mapping of E into E such that for all 𝑥 

and 𝑦 in E,  

(𝐴(𝑥) − 𝐴(𝑦),𝑤) ≥ 𝑐0||𝑥 − 𝑦||2 , 
 with a fixed constant 𝑐0 > 0 where 𝑤 ∈ 𝐽(𝑥 − 𝑦). 

Then A maps E onto E. In other words "A 

Lipschitz strongly accretive operator has a zero in 

Banach space".  

  Other important results related to the 

existence of zeros of accretive operators and their 

variants include the results of [15, 17] and the 
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references therein.  

Deimling [15] gave some basic existence results 

about the zeros of strongly accretive operators:  

Lemma 5.1If E is a Banach space and 𝐴 ∶ 𝐸 → 𝐸 is 

continuous and strongly accretive, then 𝑅(𝐴) = 𝐸. 

Hence, for any 𝑓 ∈ 𝐸, the equation 𝐴𝑥 = 𝑓 has at 

least one solution in E. Since A is strongly 

accretive, the solution must be unique.   

Lemma 5.2If E is uniformly smooth Banach space 

and 𝐴:𝐸 → 𝐸 is strongly accretive and demi-

continuous(i.e. 𝑥𝑛 → 𝑥 implies that 𝐴𝑥𝑛 ⇀ 𝐴𝑥), 

then A maps E onto E; that is, for each 𝑓 ∈ 𝐸, the 

equation 𝐴𝑥 = 𝑓 has a solution in E.  

 

 Using these results, the existence results for zeros 

of 𝜙-strongly accretive operators can also be 

obtained. 
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